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Abstract

Remote sensing (RS) has significantly enhanced the possibilities of
describing the environment and become an irreplaceable data source
for analyses in environmental sciences. Capabilities of RS were further
improved by introduction of airborne laser scanning (LiDAR), which
facilitated a direct collection of relatively accurate three-dimensional
spatial data from extensive areas. The presented thesis aims to at
least partially respond to the challenges that are associated with the
use of LiDAR in environmental sciences, including (a) data collection
using laser scanners mounted on unmanned aerial vehicles (UAVs);
(b) filtering point clouds acquired from laser scanning; (c) accuracy of
digital terrain models acquired using airborne laser scanning and those
derived from UAV imagery; and (d) application of laser scanning data
in the urban environment.

The results of the thesis showed a great potential of UAV laser scanning
for capturing terrain and vegetation. The combination of LiDAR and
UAVs is for some projects much more cost-efficient than acquisition of
data from conventional airborne laser scanning. It is however necessary
to use a suitable UAV platform as the use of an airship in our study
proved to be problematic. Under certain circumstances, photogram-
metric processing of UAV-acquired imagery may prove to be a suitable
alternative to LiDAR for terrain mapping. In the off-leaf season, this
method yields a similar accuracy to airborne laser scanning in deciduous
forests and in places with low vegetation. In any case, the accuracy of
resulting models can be affected by the choice of the filtering algorithm.
We have tested filtering algorithms across multiple types of environment
and revealed that when choosing the filtering algorithm, it is crucial to



take the character of vegetation (e.g. steppe vs. forest) and terrain into
consideration. Finally, the thesis also includes a case study utilizing the
existence of freely available LiDAR data. The study discusses the effect
of shadows on the rooftop solar potential estimates. The results imply
that the effect of shadows cast by vegetation plays a much greater role
at a local scale than at a larger scale and when for example considering
the solar potential of an entire agglomeration, the effect is negligible.



Abstrakt (Czech)

Dálkový průzkum Země významným způsobem ovlivnil možnosti popisu
prostředí a stal se nepostradatelným zdrojem dat pro analýzy v envi-
ronmentálních vědách. Významnou měrou pak tyto možnosti rozšířilo
letecké laserové skenování (LiDAR), které umožnilo přímý sběr rela-
tivně přesných trojrozměrných dat z rozsáhlých oblastí. Předkládaná
práce si klade za cíl alespoň částečně odpovědět na výzvy, které při
používání LiDARu v environmentálních vědách vyvstávají a mezi něž
patří následující témata: (a) sběr dat bezpilotními leteckými prostředky
(UAVs) využívajícími laserové skenování; (b) filtrace bodových mračen
z laserového skenování; (c) přesnost digitálních modelů terénu vytvoře-
ných ze snímkování pomocí bezpilotních leteckých systémů a z leteckého
laserového skenování a (d) aplikace dat leteckého laserového skenování
v urbánním prostředí.

Výsledky práce ukázaly vysoký potenciál UAV laserového skenování
pro zachycení struktury vegetace a terénu. Kombinace LiDARu a UAV
je pro některé projekty z ekonomického hlediska mnohem dostupnější
než pořízení dat konvenčního leteckého laserového skenování. Nicméně
je potřeba zvolit vhodný bezpilotní prostředek, neboť zde použitá
autonomní vzducholoď se ukázala jako problematická. V určitých
případech lze jako alternativu LiDARu pro mapování terénu využít
metodu fotogrammetrického snímkování pomocí UAV. V mimovege-
tačním období dosahuje tato metoda v listnatých lesích a v místech
s nízkou vegetací obdobné přesnosti jako laserové skenování. Přesnost
výsledného modelu terénu může být v každém případě ovlivněna volbou
filtračního algoritmu. Ve studii byly testovány filtrační algoritmy napříč
různými typy prostředí a ukázalo se, že kritická je zejména volba algo-



ritmu s ohledem na charakter vegetace (např. les versus step) a terénu.
Nakonec se práce zabývá konkrétní případovou studií, která byla možná
zejména díky existenci volně dostupných LiDARových dat. Zpracov-
aná studie řeší efekt zastínění vegetací na odhad solárního potenciálu
střešních ploch. Z výsledků je patrný předpoklad, že vliv zastínění
okolní vegetací u solárního potenciálu střešních ploch hraje mnohem
vyšší roli v lokálním měřítku. Naopak při řešení napříč rozlehlými
urbánními oblastmi je již tento vliv zanedbatelný.
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Chapter 1

Thesis Preface

1.1 Foreword

Laser scanning has become one of the most prominent data sources for
Earth surface mapping. Over the last decades, many new processing
techniques of airborne LiDAR (Light Detection And Ranging) data
have been developed and, nowadays, the use of LiDAR is well estab-
lished in the fields of environmental sciences. LiDAR technology can
penetrate through gaps in vegetation canopies and register multiple
returns representing both above ground objects and terrain (Wehr and
Lohr, 1999; Dubayah and Drake, 2000). Thanks to the capability of
direct acquisition of 3D data in high vertical and horizontal resolution,
airborne LiDAR data provide complementary data to other remote
sensing techniques that are suitable for vast range of applications in
environmental sciences. Many reviews have been published, focused for
example on the use of LiDAR for mapping three-dimensional habitat
structure (Lefsky et al., 2002; Vierling et al., 2008), its application
for assessment of species-environment relationships (Davies and Asner,
2014; Bakx et al., 2019) or land cover classification (Yan et al., 2015)
and new possibilities of the use of LiDAR are still being discovered
(Eitel et al., 2016). Although LiDAR is a well-established technique and
its usage is extensive, there are still challenges to be met. Various data
acquisition and processing techniques need to be properly investigated
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and validated. Mounting LiDAR sensors on UAVs may represent one
of such challenges as it is still in its infancy, especially due to the
relatively high weight of laser scanners and UAVs’ low load bearing
capacity (e.g. Esposito et al., 2014; Pilarska et al., 2016; RIEGL, 2019;
Velodyne, 2019). Development of new ground filtering techniques of
LiDAR point cloud represents another active field of research. Although
the fundamental principles of filtering were laid out relatively long ago
(Sithole and Vosselman, 2004), existing algorithms are being contin-
uously improved (Pingel et al., 2013) and new ones being developed
(see Meng et al., 2010; Rashidi and Rastiveis, 2017; Zhang et al., 2016).
Despite the widespread use of remote sensing data across various areas
of environmental sciences, there are still specialized fields where the
application of remote sensing is underdeveloped, such as restoration
ecology (Cordell et al., 2017). All the above topics therefore still offer
a broad field of research opportunities and the presented thesis aims to
at least partially answer challenges presented by the gaps in the current
state of the art.

1.2 Scientific Motivation

The availability of LiDAR data for common users is ever growing,
which is among other things being helped by the existence of free point
cloud data repositories (e.g. opentopography.org). Another valuable
source of LiDAR data is represented by open data national datasets,
which are available in some countries. Nevertheless, many existing
LiDAR datasets are not available to public or are only available for
purchase, which is also true about the national dataset of the Czech
Republic. Personally, I believe that it is necessary to increase the public
awareness about the existence of LiDAR data and, in effect, to increase
the pressure on their release. At the same time, a gradual decrease
in costs of LiDAR data acquisition can be expected; in particular, a
combination of LiDAR with UAVs can contribute towards improving
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the data availability even in relation to local scales, higher density or
an increased mapping frequency. Laser scanning can capture a complex
landscape structure, which gives it a huge advantage over traditional
field mapping methods as it can capture the condition of the landscape
at a particular time. Besides, availability of such data due to shared
repositories will make the data available also to researchers in a hundred
years. In contrast, standard field mapping methods usually only measure
selected landscape features, which are only rarely standardized and
typically only available to those who collected them so their potential
for future use is limited. This perspective is especially important if we
take into consideration that three-dimensional environmental processes
such as growth, vegetation disturbation, snow and ice accummulation
or melt, fluvial and soil erosion processes and other aspects of landscape
development are inherently dynamic.

1.3 Thesis Structure

The thesis consists of three published and one submitted studies. It
is divided into two Parts and seven Chapters. Part I contains this
preface and a general introduction into the field of remote sensing,
airborne laser scanning and its application in the environmental research.
Part II contains chapters with texts of the individual published or
submitted studies: Study I: Suitability, characteristics, and comparison
of an airship UAV with LiDAR for middle size area mapping; Study
II: Assessment of LiDAR ground filtering algorithms for determining
ground surface of non-natural terrain overgrown with forest and steppe
vegetation; Study III: Comparison of leaf-off and leaf-on combined
UAV imagery and airborne LiDAR for assessment of a post-mining site
terrain and vegetation structure: Prospects for monitoring hazards and
restoration success and Study IV: Influence of vegetation canopies
on solar potential in urban environments. The last Chapter contains
comments to and summary of the findings of individual studies.
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Chapter 2

Objectives of the Thesis

The aims of this Thesis are: 1) to investigate the possible use of
airborne laser scanning for mapping of a three-dimensional structure of
the landscape, in particular a) suitability of various unmanned aerial
vehicles (UAVs) for LiDAR data collection, b) to evaluate existing
filtering algorithms important for processing laser scanning data, c) to
compare UAV imagery and airborne LiDAR for evaluation of the
terrain and vegetation structure, and d) to investigate the feasibility
of application of laser scanning data for evaluation of the influence of
vegetation on solar potential; and 2) based on the acquired results,
to discuss the contribution of airborne laser scanning in the field of
environmental research.
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Chapter 3

Theoretical Background

3.1 Introduction

The knowledge of three-dimensional structure of the environment is
crucial for environmental sciences as such structure affects natural
processes to a great degree. Various mapping methods are utilized for
capturing the landscape structure – terrestrial, airborne or spaceborne
technologies of modern mapping that may use both passive and active
remote sensing (RS) methods. The most common representation of
the mapped structure for research applications comes in the form of
products such as digital terrain models (DTMs) or digital surface models
(DSMs). DSMs and DTMs are used in many areas as the shape of
the terrain plays an important role in atmospheric, geomorphological,
hydrogeological or ecological processes (Wilson, 2012). The typical
applications of those models can be found in the fields of geodesy,
geology, geophysics, civil or military engineering, landscape design,
urban planning, or environmental management (Petrie and Kennie,
1987; Li et al., 2004).

At present, airborne photogrammetry and airborne laser scanning (ALS)
are the most widely used mapping methods. ALS is an accurate tool for
measuring ground topography, land cover or three-dimensional structure
of vegetation. Recently, even newer methods of “computer vision” such
as structure from motion (SfM) and multi-view stereo (MVS) have
grown in popularity and complement the ALS method (e.g. Iglhaut
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et al., 2019; Nowak et al., 2019; Ren et al., 2019). These methods of
RS yield similar data to those generated by ALS, they however do
not provide comparably detailed spatial information, especially the
information about vegetation structure (Lisein et al., 2013). Their
principal benefit however lies in their lower price, especially where the
data acquisition is done by unmanned aerial vehicles (UAVs).

The beginnings of the use of the laser technology for RS application
go back into 1960s and 1970s when the possibility of their use for long
ranging purposes has been first demonstrated, especially in view of
ambitious space projects (Flood, 2001). Since then, and especially in the
recent years, the availability and accessibility of laser scanning systems
for mapping the Earth surface have increased. Those systems are widely
known under the name of light detection and ranging (LiDAR). LiDAR
technology as an active RS method brought many new options and
new applications in various research areas as well as in engineering.
It has won such a prominent position especially due to the ability
to provide data with (until then) unimaginable speed, accuracy and
density. Besides, data from widespread passive RS methods (such as
visible light or multispectral imagery) are usually unable to provide
information about the vertical component of landscape structure as
their use cannot penetrate the uppermost layer of the vegetation cover.
LiDAR systems, on the other hand, are usually able to acquire data
on the internal vegetation structure. They have thus proved to be
a desirable complement to the passive sensors. Combination of laser
scanning data with those obtained from other RS sensors can result
in a very sophisticated system for collection of data on the vertical
landscape structure.

LiDAR or laser scanning systems are nowadays no longer only used as
airborne laser profilers and scanners (ALS), other modifications mounted
on various platforms have also been developed. Representatives of such
systems especially include dynamic mobile laser scanners (MLS) or
static terrestrial laser scanners (TLS). Laser altimeters or spaceborne
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laser profilers constitute a separate category. MLS are most frequently
used for corridor mapping of linear elements such as roads, railroads
or watercourses. This system is typically mounted on cars, trains, or
boats (Michoud et al., 2014). When compared to ALS, TLS provides
usually much higher point density and measurement accuracy. The
limited range of scanning and high time demands however prevent the
use of this method for more extensive mapping. The choice of a suitable
platform depends on the properties of the studied surface, extent of the
mapped area, required accuracy and resulting data density (Baltsavias,
1999b). The presented thesis is especially focused on airborne laser
scanning and its use for the needs of environmental sciences where it is
often necessary to collect data from large areas.

3.2 Airborne Laser Scanning:
Data Acquisition and Processing

Airborne laser scanning is a modern remote sensing method for direct
collection of spatial data. Under optimal circumstances, its absolute
vertical accuracy is ± 0.15 m, which makes it one of the most accurate
RS methods (Charlton et al., 2009; Wei and Bartels, 2014). Due to its
accuracy and speed of data collection even over extensive areas, it plays
a very important role in many areas of research and/or commercial
applications including archaeological exploration, (Crow et al., 2007),
ecology (Clawges et al., 2008), hydrological modelling (French, 2003;
Mandlburger et al., 2008), glaciology (Arnold et al., 2006), geology and
geomorphology (Johnson et al., 2015), forestry (Hyyppä et al., 2004;
Dubayah and Drake, 2000) and many others, see Harpold et al. (2015).

The term LiDAR is an acronym for Light Detection And Ranging.
Some authors abbreviate the system as LADAR (LAser Detection And
Ranging), in which case the acronym is created in the same way as
RADAR (RAdio Detection And Ranging). Other names for this method
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in literature include laser scanning, laser mapping, or laser altimetry. As
the title suggests, the technology uses laser beams to measure distances
and, in effect, to determine positions of objects (Wehr and Lohr, 1999).

3.2.1 The principle of laser ranging

The word laser is an acronym on itself, standing for Light Amplification
by Stimulated Emission of Radiation. Laser is an optical device pro-
ducing, upon activation by an external energy source, a monochromatic
radiation – a laser beam. Laser is used for measurement of distances
due to its unique characteristics such as its coherence and capability of
emitting a huge amount of photons in a defined direction in very short
impulses of pre-defined frequency and wavelength (Heritage and Large,
2009).

Laser unit

Target

Transmit and Receive time (t)

Time

Time

En
er

gy
En

er
gy

Transmitted 
laser pulse

Return laser pulse

Figure 3.1: The time of flight principle (Heritage and Large, 2009).

In general, two types of lasers can be used for laser ranging, namely
pulsed laser and continuous wave (CW) laser. The method of distance
calculation differs according to the type of utilized laser. The physical
principle of pulsed laser rangefinder lies in the emission of photons
that are subsequently reflected back from the measured surface into
the recording unit. The distance from the device to the object is then
determined from the difference between the emission and reception of
the impulse, i.e., from the time it takes to the light beam to travel
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to the object and back. This principle based on the speed of light is
called time of flight. CW lasers calculate the distances from the phase
difference between the emitted and returned beam. In commercially
available systems, however, the time of flight method of laser ranging
is the more common (Baltsavias, 1999a,b).

The record of the emitted and received impulses can be expressed as the
amount of energy or intensity as a function of time. The time period
between individual detected incoming impulses is recorded and forms
the basis for calculation (Fig. 3.1).
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Figure 3.2: The relationship between the laser wavelength and surface reflec-
tivity (JHU Spectral Library, NASA JPL).

Many types of lasers are used in LiDAR systems. Based on the laser type
and application, various wavelengths can be utilized. Many commercial
systems for general topographic mapping operate with infrared radiation
(a wavelength of approx. 1064 nm), while for example bathymetric
LiDAR systems developed for mapping of watercourse and water body
bottoms use a wavelength of 532 nm (Baltsavias, 1999b). Recently,
even universal multispectral LiDAR systems performing a simultaneous
recording in several wavelengths (such as a combination of 532 nm,
1064 nm and 1550 nm) have appeared on the market (Teledyne, 2019).
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The advantage brought by a simultaneous use of several wavelengths
lies in different interactions of the beams with the material of the
scanned surfaces. The object reflectivity is to a certain extent even
more important than their size due to the differences in the reflectivity
rates of individual materials. For example, a laser scanner may be
capable of recording a 1 cm power line wire while missing a 3 cm
wide branch of a tree (Baltsavias, 1999b) (see Fig. 3.2). For example,
it is beneficial to use laser with 810 nm wavelength when mapping
glaciers as its reflectivity from ice and snow is higher than that of other
wavelengths (Wehr and Lohr, 1999). Reflectivity of the studied material
thus affects the rate and effectiveness of its capture during scanning.

GNSS
Base Station

DGNSS / INS

GNSS

Figure 3.3: Airborne LiDAR system structure.

3.2.2 Airborne LiDAR

Airborne LiDAR is a complex multisensor system consisting most
importantly of the control, monitoring and recording unit (CMR),
position and orientation system (POS) and laser scanner (Fig. 3.3)
(May and Toth, 2007). The system can be complemented with additional
sensors such as photogrammetric chamber, video system, multispectral
sensor, etc. (Baltsavias, 1999b). Such a system can be mounted on
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various types of airborne carriers including airplanes, helicopters or
UAVs (Charlton et al., 2009). The airborne LiDAR gradually records the
surface under the moving airplane using a laser scanner – a device, the
function of which is to distribute the beams that are typically emitted
every 5-10 ns (Wagner et al., 2004). It consists of an optomechanical
scanner, memory unit and a laser distance meter consisting of the laser
emitter and electro-optical receiver (Wehr and Lohr, 1999). The most
commonly used optomechanical device is a rotating mirror directing
the laser beam in the axis perpendicular to the flight direction. The
movement of the beam in the axis of the flight is then of course ensured
by the flight of the carrier itself. The maximum crosswise extent of
the device is called swath width. As scanning is performed in swaths,
some authors also use the abbreviation ALSM (Airborne Laser Swath
Mapping) instead of ALS (Slatton et al., 2007).

If an airborne system is used, it is of course also necessary to have
accurate information about the position of the carrier. To be able to
determine the spatial coordinates of every reflecting surface, the scanner
position and orientation of the laser unit at any time must be known,
which is ensured by the integrated POS. POS consists of an inertial
measurement unit (IMU), differential global navigation and satellite
systems (DGNSS) positioning system and a control unit. The position
of the carrier is detected using several DGNSS and elements of carrier
orientation (pitch, role and heading) of the inertial navigation system
(INS/IMU). A combination of the control unit, laser scanner, DGNSS
and INS then ensures the capture of all recorded points in a unified
coordinate system (Wehr and Lohr, 1999).

3.2.3 Types of LiDAR sensors

Several types of construction of the airborne LiDAR systems are avail-
able, usually categorized on the basis of one of two criteria – either
according to the footprint size (small-footprint and large-footprint) or
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based on the processing of returns (discrete return systems and full-
waveform LiDAR systems). Small-footprint systems are characterized
by a small diameter of the laser footprint on the surface (< 100 cm),
usually with a very high recording frequency, thus creating a dense
point cloud, while large-footprint systems are characterized by a greater
diameter of the laser footprint (10–100 m) and a lower recording fre-
quency.

The classification according to the method of reflection processing dif-
ferentiates between discrete return systems and full-waveform LiDAR
systems (Devereux and Amable, 2009). Discrete return systems record
a single (Single pulse LiDAR), two or more returns (Multi pulse Li-
DAR). Conversely, a full-waveform LiDAR can record the full intensity
curve of the return. The undisputed advantage of such system when
compared to the discrete return systems is the possibility to analyse
the waveform of the reflected beam and thus to provide information on
the structure and physical properties of the reflecting surface such as
reflectivity, roughness or geometry. Typical attributes derived from the
full waveform analysis include range, elevation variation and reflectance,
which can be subsequently used in data classification or filtering (Mallet
and Bretar, 2009; Reitberger et al., 2008, 2009). Nowadays, new types
of LiDAR sensors such as Multi-spectral LiDAR (Teledyne, 2019) or
Geiger Mode LiDAR/Single Photon LiDAR (Stoker et al., 2016) are
also available.

3.2.4 LiDAR data

The output from LiDAR scanning is an irregular distribution of points
in a three-dimensional space, known as point cloud (Straub et al., 2009)
(Fig. 3.4). These points are a result of a direct measurement of the
surface structure. Every single point in the point cloud is termed a
“return” as it denotes a position of a detected return of the laser beam
from the studied surface. In this text, the terms point and return will be
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used interchangeably. It is also necessary to point out that the amount
of data originating from laser scanning is usually very high. Within
an hour of scanning, typically tens of millions of points are generated
(depending on the type of the scanning system, speed of the carrier
and spatial resolution). A typical LiDAR system provides a spatial
resolution (or scanning density) of 10 points per square meter where
the carrier is an airplane or 200 points per square meter if the scanner
is mounted on a helicopter (Devereux and Amable, 2009). Every point
in the point cloud is associated with attributes recorded at the moment
of the receipt of the return of the laser beam by a scanning device. At
the first sight, it may appear beneficial to always strive for as dense
a point cloud as possible; a high density however, besides increasing
costs of data acquisition significantly, also complicates subsequent data
processing.

Figure 3.4: Classified ALS point cloud.

Many special data formats have been developed for storage of the
acquired data, the most commonly used of which (and supported by
almost all LiDAR and GIS tools) are a binary LAS data format or
ASCII XYZ format. LAS is a universal format serving for recording
and editing point data originating in particular from laser scanning,
regardless of the hardware or software used. Every data file contains
information on the used LiDAR system, coordinate system, total extent
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of the data and the point data themselves. Besides the positional 𝑋, 𝑌 ,
𝑍 coordinates, every return is associated with data on the intensity of
the return, order of the return, the total number of returns in the pulse,
class, scanner angle, GNSS record time and, if present, additional data
from various sensors (NIR or RGB values). A derived format, LAZ, is a
LAS format that underwent lossless data compression (ASPRS, 2013).

The other widely used format of data recording is the ASCII format,
i.e. TXT, CSV or DBF files. These are in principle text files containing
records of individual points, similar to LAS. This format however usually
records only the positional coordinates and sensor altitude, possibly
including intensity values in columns (Samberg, 2007).

3.2.5 Availability of existing LiDAR datasets

Especially in Europe (it can be however to a certain degree observed
worldwide), there is an increasing trend of the usage of laser scanning
for national programs of improving the elevation and topographic maps.
Some datasets have been in recent years released by national policies
and made accessible to public, research institutes and/or commercial
organizations, so-called open data. The data can be obtained free
of charge in several countries, albeit in some, it is just for a partial
area. At present, such states include for example Finland, Denmark,
Netherlands, United Kingdom, Slovenia, Spain or Switzerland. ALS
data are also available for the entire Czech Republic, they are however
not freely available but must be purchased. Individual datasets differ in
the degree of coverage, in their up-to-dateness, accuracy or resolution.

3.2.6 Point cloud filtering and classification

Regardless of the application and the final product needed, an inevitable
and at the same time the most critical step of the LiDAR point cloud
processing is ground filtering – a process of detection of ground points,
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i.e., points lying on the terrain. This can be achieved using various
filtering algorithms that have been developed for ALS data processing
(Zhang et al., 2003; Meng et al., 2009; Susaki, 2012). Numerous filtering
algorithms have been reviewed e.g. by Sithole and Vosselman (2004).
The output of ground filtering is a file containing points classified
as ground and non-ground points. The correct filtering is crucial for
creating final products such as digital terrain models (DTMs), digital
surface models (DSMs) or feature extractions (Sithole and Vosselman,
2004; Chen et al., 2017).

Non-ground points can be also further classified. Usually, buildings and
vegetation are two such classes. Other classes may include noise (gross
errors), low, medium and high vegetation, road surfaces, water bodies,
power lines (wires) and transmission towers, or specific points of the
skeleton of terrain relief. Data classification is a process performed in
several cycles, during which individual points representing the returns
of the terrain and objects on it are assigned into individual classes (Filin,
2004; ASPRS, 2013). At this stage, a maximum automation is desirable.
For improving the accuracy or determination of specific objects of
interest, manual classification may play a complementary role; a full
manual classification is however, from the perspective of the immense
extent of the point cloud and sheer volume of data, a laborious and
time consuming process, often practically non-feasible. Classification
of the point cloud can be based on the height characteristics, shape
of the local structure of the point cloud and reflection intensity. The
definition of the individual classes is actually standardized in the LAS
format specification (see Tab. 3.1). The intensity of the reflected beam
can therefore be utilized for distinguishing between individual land
cover categories and data classification as its value is dependent on
the reflectivity and physical properties of the material of the scanned
object or surface (Song et al., 2002; Charaniya et al., 2004; Kashani
et al., 2015).
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For classification and processing of laser scanning data, specialized
software is used, e. g. LAStools (rapidlasso.com), FUSION/LDV
(forsys.cfr.washington.edu), CloudCompare (danielgm.net/cc) or stan-
dalone libraries, e. g. Point Cloud Library (pointclouds.org) or Point
Data Abstraction Library (pdal.io). Limited tools for processing point
clouds are available in some GIS software such as ArcGIS, GRASS GIS
(Petras et al., 2016) or SAGA (Jochem et al., 2010). Besides DTM
or DSMs, products generated from ALS data may include contoured
maps, 3D building models or vegetation models.

Table 3.1: ASPRS Standard LIDAR point classes.

Value Meaning Value Meaning
0 Created, never classified 11 Road Surface
1 Unclassified 12 Reserved
2 Ground 13 Wire – Guard (Shield)
3 Low Vegetation 14 Wire – Conductor (Phase)
4 Medium Vegetation 15 Transmission Tower
5 High Vegetation 16 Wire-structure Connector
6 Building 17 Bridge Deck
7 Low Point (noise) 18 High Noise
8 Reserved 19–63 Reserved
9 Water 64–255 User definable
10 Rail

Source: (ASPRS, 2013)

3.2.7 Errors, accuracy and quality of data

To ensure a required quality of the products of the project, it is necessary
to do the preparations and flight planning prior to the data collection
itself. A proper flight planning affects, among other things, the price of
the resulting product, and maximum effectiveness is thus desirable. The
quality of the point cloud is of course affected both by systematic and
random errors in the scanning process. This means that it is necessary
to perform proper evaluation of the LiDAR data quality in order to
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minimize the rate of erroneous values that would have negative impact
on the resulting products. While scanning, incorrect positioning of some
points or a record of a non-existent return caused by a high radiation
noise can occur. Inaccurate measurements are often caused by an
interaction of the laser beam with atmospheric particles, which means
that dust particles or smoke in the studied area have a detrimental
effect on scanning accuracy. The ideal conditions for scanning are
represented by clean and dry environment with a minimum of carbon
dioxide and without any form of water in the air (rain, fog, humidity).
The best results are achieved at night while the worst results during
clear sunny days (Baltsavias, 1999a). Errors caused by such conditions
can to a certain degree be removed by suitable filtering algorithms in
specialized software.

To ensure the required accuracy, quality assurance and quality control
(QA/QC) processes should be adhered to. Quality Assurance (QA)
denotes processes related especially to the management of quality such
as calibration, planning, implementation and supervision of the data
collection process. Examples of QA may include pre-flight terrain
reconnaissance in the scanned area and rough determination of the
surface (such as the vegetation extent and density or high-rise buildings)
allowing selection of optimum flight parameters. In forested areas, those
mean slower speed, lower scanning angle, higher swath overlap, or a
lower flight altitude to ensure a higher point density. For the best
possible accuracy of the determination of the position of the carrier
using DGNSS, it is also important to choose a proper time frame
combining a good visibility and ideal positions of the satellites (Habib
and Rens, 2009).

The term Quality Control (QC) is used for evaluation of the quality
of the final products (typically DTMs or DSMs). End users who only
receive the final product are often not informed about the methods
used for its creation and even if they were, they are often unable to
judge the suitability of the used methods. For this reason, a proper
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evaluation of the accuracy of acquired models is crucial. To evaluate
the accuracy of the final product, ground control points (GCPs), well-
recognizable points with geodetically determined positions inside the
scanned area are usually used. The quality control is then performed
by comparing the final product created from the filtered LiDAR point
cloud (typically DTM) with the independently selected GCPs. In
addition, data from the overlapped areas of scanning can be also used
for evaluating the quality of the data and system calibration. Differences
between individual swaths in the overlapped areas are then aligned using
various mathematical methods. In this way, systematic component of
error can be usually detected, reduced and/or even eliminated and data
accuracy can be improved (Habib and Rens, 2009).

Nevertheless, despite all efforts for quality assurance and accuracy,
measured data always contain errors, regardless of the used method of
measurement. Such errors originate from inaccuracies in the source data,
in the data collection, human errors in the process of data collection,
errors stemming from coordinate system transformations or in data
processing. It must be however taken into account that the absolute
accuracy of mapping is not the only parameter of creating products
such as DTMs and others – a much more reasonable approach lies in
determining a required accuracy, which subsequently allows creating
sufficiently accurate and economically feasible products. It is of course
possible to improve the accuracy by selecting appropriate methods and
algorithms for surface modelling combined with increased density of
data. Any increase in the data density is however inherently associated
with higher costs of data acquisition and, in effect, of the final product.
Hence, decision on a data density optimal for the project in question
must be made, which however may not be always a simple one (Li et al.,
2004).
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3.3 Laser Scanning Data: Common
Derived Features and Variables

3.3.1 Structure of terrain and vegetation

The capability of the beam to penetrate through canopy gaps and
to capture terrain or objects under the canopy constitutes one of the
greatest advantages of ALS as it allows the researchers to capture
even terrain in the forested areas with a relatively good accuracy. In
areas covered with vegetation, the laser beams are usually reflected by
various layers of the vegetation cover. The interaction of the laser beam
with the canopy is thus characterized by multiple returns from several
depths of the vegetation cover. The first return typically comes from
the vegetation canopy surface. The gaps in the non-continuous surface
allow the beams to penetrate deeper so a second and possibly other
returns follow, with the last one ideally being a return from the terrain.
Such a penetration of the beam and evaluation of multiple returns can
be used for modelling or deriving vegetation characteristics and metrics
in both vertical (e.g. canopy height, standard deviation of height) and
horizontal (e.g. canopy cover, canopy gap density) directions (Bakx
et al., 2019). In addition, individual treetops can be distinguished
and trees in the tree stand counted, crown diameter, canopy density,
the volume of wood matter and/or biomass, vertical structure of the
individual vegetation levels or even of individual vegetation species
can be determined (Dubayah and Drake, 2000; Hyyppä et al., 2004;
Næsset et al., 2004). Terrain returns are however not always detected –
the possibility of their recording depends on the spatial distribution
of the vegetation canopy (or gaps therein), scan angle, laser beam
divergence and reflectivity of the surface for the wavelength of the laser
beam(Hofton et al., 2002; Næsset et al., 2004).
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Unlike ALS, other remote sensing methods such as photogrammetry are
only able to provide a partial information on the vegetation structure
(Fig. 3.5). They can be for example used for acquisition of imagery
that can be used for classification of woody plant species (Holmgren
and Persson, 2004) or to derive information about the tree stand health
(Hyyppä et al., 2004) but they usually cannot provide data on the
vertical structure of vegetation (Lefsky et al., 2002).

Airborne Imagery (Structure from Motion)
Airborne Laser Scanning

Figure 3.5: Comparison of point cloud from airborne photogrammetry and
airborne laser scanning (Lisein et al., 2013).

3.3.2 Digital model of the terrain
and of the surface

The most common products from airborne laser scanning are digital
terrain models or digital surface models (Fig. 3.6) (Flood, 2001).
Such models are in principle elevation rasters that are derived from
filtered point clouds using various surface interpolation algorithms
(linear interpolation, IDW, etc.). The raster resolution depends in
particular on scanning density. A more detailed raster, and, in effect,
capturing the surface in greater detail, requires the use of a scanning
method with a higher point density per square meter. Another option
of the surface representation is a triangulated irregular network (TIN).
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In any case, it is necessary to use a point cloud classified as correctly
as possible to obtain an accurate relief/surface model. The basic
prerequisite for producing an accurate digital surface model is the
availability of data classified into ground and non-ground points.

Digital Surface Model (DSM)
Digital Terrain Model (DTM)

Figure 3.6: Digital surface and terrain model.

3.3.3 Canopy height model

Besides DSM and DTM, so-called normalized digital surface model
(nDSM) showing differences between DSM and DTM is a commonly
used product. In this way, the values of the terrain drop to zero and
nDSM thus represents the objects present on top of the relief (buildings,
vegetation, etc.) (Fig. 3.7). To obtain information on the vertical
structure of the canopy, a DSM containing vegetation only must be
created, so-called canopy height model (CHM), which is a normalized
digital surface model showing the full vertical structure (Fig. 3.8) or
only certain distinguishable levels of the vegetation (Lefsky et al., 2002).
A CHM with a sufficient detail may be used for detection of individual
trees (Pitkänen et al., 2004).

Further processing and analysis of CHMs can yield some dendrometric
values. It has been however demonstrated by several studies that
vegetation parameters acquired from ALS data processing are typically
underestimating heights by 0.2-0.5 m (Næsset and Økland, 2002; Coops
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normalised Digital Surface Model (nDSM = DSM − DTM)

Figure 3.7: Normalised digital surface model.

et al., 2007; Heurich, 2008). A dependency of the vertical distribution of
the canopy on the circular case and amount of the above-ground biomass
has also been shown (Lefsky et al., 1999). The highest correlation was
detected between the median square canopy height and size of the
above-ground biomass. This way, it is possible to estimate the amount
of biomass in forests from the tree height.

In general, the difference in elevation between the first and last return
can be expected to imply the canopy height. There are however prob-
lems, especially where the small-footprint ALS is concerned. As the
diameter of the beam is small, it may fail to capture the treetop. This
problem does not apply to the large footprint systems where the laser
beam captures the entire crown of the tree (Nelson, 1997; Dubayah and
Drake, 2000).

Canopy Height Model (CHM)

Figure 3.8: Canopy height model.

When creating CHMs, pits in raster occur. Such pits are a result of
incorrect classification of the return from the ground (or lower layers
of vegetation) in the middle of high vegetation points; if such points
are classified as canopy, the canopy appears to suddenly drop to the
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ground in the created nDSM or CHM raster. There are several specific
approaches and techniques for reducing pits occurrence. A typical
representative of such methods is raster smoothing (Yu et al., 2011),
other advanced algorithms such as Pit-free algorithm (Khosravipour
et al., 2014) or Spike-free algorithm (Khosravipour et al., 2016) have
however also been developed.

3.3.4 Ecological applications
and three-dimensional structure

ALS data provide a high accuracy both in the horizontal and vertical
resolution, which makes them suitable for investigations of biodiversity
in various extents (Weisberg et al., 2014). It is well known that the
three-dimensional structure of the sites is a principal driver of the
interaction of animals with their surroundings (Davies and Asner,
2014). The structure may be defined both in the vertical and horizontal
dimension (Bergen et al., 2009). Among other parameters (see review
by Bakx et al., 2019) CHM parameters generated from the maximum or
mean canopy height are often used (Flaspohler et al., 2010; Garabedian
et al., 2014; Barnes et al., 2015; Sasaki et al., 2016). Other such
parameters that can be utilized include ratios of raw LiDAR points at
defined vertical levels above the terrain (Ackers et al., 2015), elevation
percentiles, canopy cover (Graf et al., 2009), penetrability of the canopy
and relative ratios of LiDAR returns from individual vertical layers (Hill
and Hinsley, 2015). The vegetation structure is however not the only
factor. A significant effect on the habitat selection of individual animal
species or communities may be attributed to the composition of tree
species and vegetation growth pattern. LiDAR data can not provide
full information on vegetation and for this reason, some studies use
ALS data in combination with multispectral or hyperspectral imagery
to acquire additional vegetation characteristics (Colgan et al., 2012;
Asner et al., 2015).
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Abstract

In this article, the autonomous mapping airship (AMA) equipped
with LiDAR along with its basic properties is introduced. Other
methods and technologies using unmanned aerial vehicles (UAVs) or
conventional aircraft are then compared to the AMA, namely automatic
reconstruction from photographs acquired with fixed wing UAVs and
LiDAR taken from conventional aircraft. Comparison of technologies
was performed at a site of a brown coal mine spoil heap. The size of the
area of interest is about three square kilometres and it is covered with
wind-blown vegetation (trees, grass, bush). For the purpose of accuracy
analysis, we measured about 100 height check points (HCPs) using real-
time kinematic Global Navigation Satellite System technology. The
HCPs were equally distributed between vegetation-free ground and
the terrain with low vegetation (grass). Other properties of the used
methods and acquired data were also compared. The most important
of these were data density, vegetation penetrability, speed of data
collection, and economical aspects.
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4.1 Introduction

Various suitable technologies with different properties are nowadays
available for mapping of medium size areas (1–10 km2). Besides con-
ventional selective surveying methods, we can distinguish two basic
principles for data collection, namely LiDAR (also called laser scan-
ning) and (intersection) photogrammetry. These include fixed-wing
or multicopter UAVs with a camera or a conventional aircraft with
LiDAR. Drones with LiDAR also exist but their practical usage is still
very limited. We use a rather unusual type of drone, a model airship
equipped with LiDAR, an autonomous mapping airship (AMA) – a
system with some unique properties.

We try to compare various available solutions, including the experimen-
tal system AMA, for mapping of an uninhabited and difficult to access
area of part of a spoil heap of about 3 km2.

4.2 Technologies Used

Two main airborne data acquisition technologies, namely LiDAR and
photogrammetry, using three different kinds of platforms are consid-
ered in this study. They will be described in detail in the following
subsections.

4.2.1 AMA

The AMA is a mapping system with specific properties suitable for
effective mapping of medium-sized areas (in the range from 1 to 10 km2).
This system should be useful especially for areas that are too large
for conventional selective surveying with Global Navigation Satellite
System (GNSS) or total station and too small for the use of manned
aircraft in terms of cost and accuracy. Accessories of the system will
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allow, for example, collecting data for urban area modelling, creating
thermometric georeferenced maps, and mapping of dangerous or inac-
cessible areas (dumps, open-pit mines). For this reason, the platform is
equipped with a laser scanner, a visible spectrum (VIS) camera (one for
vertical capturing or more for slope capturing), a thermal camera, and
inertial navigation system INS/GPS as an exterior orientation (pose)
determination unit. Especially in the field of urban mapping the airship,
as a platform, should have some legislative advantages in the future as
has been alleged during consultation with Civil Aviation Authority of
the Czech Republic. The resulting absolute accuracy of the developed
system should be better than 10 cm (standard deviation) with the
random component less than five centimetres, which is based on an a
priori accuracy analysis. This accuracy is lower than for conventional
measurements, but on the other hand higher than the scanning system
carried by a conventional aircraft. In terms of properties (accuracy,
speed of data collection) our system is close to the terrestrial mobile
scanning systems, without its disadvantage in the lack of availability in
locations with difficult accessibility. More detailed information about
the AMA project is given by Jon et al. (2013). We also have experi-
ence with conventional aircraft-mounted LiDAR systems(Pavelka et al.,
2010) and other UAV systems (Řezníček and Straková, 2013), so we
can compare theirs properties and specify suitable areas of use.

The selection of a platform was based on our specific requirements
such as the carrying capacity in the first place, long flight time, safety
(in case of failure there is no danger of straight fall as the airship
stays always little bit heavier than air, 2–3 kg depending on the actual
amount of petrol, it will drop smoothly to the ground without putting
people’s health or equipment in danger) and flight characteristics such
as stability of flight in terms of vibrations and possibility of flight at
low speed.

The airship ACC15X (Fig. 4.1) made by the company AirshipClub.com
is 12 m long with maximum envelope diameter of 2.8 m filled with 57 m3
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helium. The airship has operating speed of 30 km/h, maximum speed
of 55 km/h and practical altitudinal accessibility of 1000 m (maximum
legal altitudinal accessibility for any civil UAV in the Czech Republic
is 300 m above terrain). Movement is provided by two AXI 5320/34
electro motors with propellers produced by MODEL MOTORS s.r.o.
The whole system is powered by a petrol engine power generator that
can work for about three hours with fully loaded fuel tank (volume
5 L). The petrol engine model is ZDZ 50 NG; its maximum power
is 3.07 kW and was produced by ZDZ Modelmotor. The necessary
equipment for the ACC15X airship also includes a helium compressor
and two high-pressure cylinders (300 bars). The equipment is relatively
heavy (the compressor 105 kg, one cylinder approximately 200 kg) and
spacious, therefore it is usually transported on a trailer as in our case.

Figure 4.1: The autonomous mapping airship – AMA.
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4.2.1.1 Measuring platform

The measuring platform is designed and optimized to run suspended
from an airship. It is mounted on the muted (Teflon shaft in adjustable
frictional bush) gravitational gimbal and it has modular concept which
allows employing different sensors and change their number and posi-
tions. The only limitation is the total weight, which should not exceed
15 kg (the carrying capacity of the airship). Gimbal was chosen to
maintain the stability of the vertical instruments’ field of view.

Currently, complete equipment consists of INS and GPS combined unit
(iMAR iTracer – F200), laser scanner (SICK LD-LRS1000), digital
camera in the visible spectrum (Canon EOS 100D) and a professional
thermometric camera (FLIR SC645). For logging data, an industrial
computer Stealth LPC-125LPM is used. All these components are
mounted on one platform close to each other to prevent inaccuracies
due to torsion of construction. Determination of the spatial relation of
all used components is necessary for accurate direct georeferencing of
any acquired data, which was the main objective of the AMA project.
It has been theoretically solved in the article (Koska, 2013), which is
based on the work of Skaloud and Lichti (2006). The result of practical
calibration was published in the work of Koska et al. (2014).

4.2.1.2 Laser scanning unit – SICK LD-LRS1000

SICK LD-LRS1000 is a rotating two-dimensional (2D) scanner de-
veloped primarily for industrial safety applications. The company
SICK AG has a long tradition in laser scanner manufacturing and
their products have a favourable price/performance ratio, which makes
the scanners often used in mobile robotics and mapping application
(Derenick et al., 2008).

The most important parameters of the scanner are listed in Table 4.1,
all parameters can be found in the product technical specification sheet.
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Table 4.1: Basic parameters of laser scanner SICK LD-LRS1000.

Range/reflectance 2.5–250 m/100%, 80 m/10%
Angle range 360°
Maximum measuring frequency 14,400 Hz
Rotating frequency 5–10 Hz
Standard (statistical) deviation (1𝜎) 25 mm
Accuracy (systematic error) ±38 mm to 80 m, ±63 mm over 80 m
Minimal angle resolution 0.125°
Beam diameter at output 40 mm
Laser beam divergence 2.8 mrad = 0.16°
Interfaces RS-232/RS-422, Ethernet, CAN

4.2.1.3 Time synchronization

A synchronization board based on the Arduino platform was made
for the purpose of precise time synchronization (better than 1 ms).
The ‘Interface Routing’ scanner service, which enables a full control of
communication for the selected pair of interfaces, is used for synchro-
nization. A message composed of an exact GPS time is sent in regular
intervals onto the second connected interface (RS-232). The scanner
does not interpret the message; it only saves the time of its inner clock
for the message last sign and resends the message with its time to the
master interface (Ethernet).

The whole functionality of the synchronization board follows this princi-
ple: the inner clock of the synchronization board is set and kept by time
pulse (PPS), and its NMEA message (of $GPGGA type) from the GPS
with accuracy is better than 1 ms. Commands on taking an image by a
digital camera or a thermometric camera are sent in the selected time
moments from the control computer into the synchronization board.
After executing the command, the synchronization board sends a mes-
sage with identification of the command with an exact GPS time of
the command execution into the control computer. In regular intervals,
the synchronization board also sends synchronization messages with
GPS time into the laser scanner. These messages are marked by the
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laser scanner with time of its inner clock and automatically resent to
the control computer.

4.2.2 Photogrammetry from fixed wing UAV

Photogrammetry from UAVs is becoming a standard method for spatial
data mass collection for small areas (less than 1 km2).

We have two different fixed-wing UAVs at our disposal at the moment,
namely eBee from senseFly SA and a home-assembled UAV which
consists of an Easy Star II airframe from Multiplex and autopilot
3DR Pixhawk B (Fig. 4.2). eBee is equipped with a digital camera
Canon S110 optionally with standard visible, near infrared or red edge
spectrum. Easy Star is equipped with a Nikon Coolpix A camera,
which has much better imaging characteristics than the Canon S110
(see DxOMark, 2016), which is why it was used in the project.

Figure 4.2: Easy Star II (wingspan 1366 mm) with 3DR Pixhawk B autopilot
in the measurement locality.

Photogrammetric processing is based on the structure from motion
technology, which was probably first publicly demonstrated in the
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project Photo Tourism (Snavely et al., 2006) and next on Multi View
Stereo technology (see for example Furukawa and Ponce, 2009).

If precise differential phase GNSS processing for image localization is
not used, as in our case, it is necessary to apply ground control points
(GCPs) to achieve output accuracy in the range of centimetres.

It is shown in several works (e.g. Vorster and Strecha, 2013; Nocerino
et al., 2013) that in the case of correctly performed photogrammetric
projects, it is possible to achieve an accuracy of about 1 pixel of image
ground surface resolution (GSR) in the horizontal components and
about 1.5–2 pixels of resolution in the vertical component.

4.2.3 LiDAR from conventional aircraft

Another method used for comparison is LiDAR data acquired from a
conventional aircraft. We did not order custom scanning of the site
because of economical and time aspects, but we instead used ČÚZK
(Czech Office for Surveying, Mapping, and Cadastre) product called
DMR 5G, which is maintained for the whole area of the Czech Republic.

The ČÚZK description of the DMR 5G product on its website (cuzk.cz)
is: ‘the digital terrain model of the Czech Republic of the fifth generation
(DMR 5G) represents natural or by human activity modified terrain
surface in a digital form as heights of discrete points in an irregular
triangular network (TIN) with 𝑋, 𝑌 , 𝐻 coordinates, where 𝐻 means
the altitude in the Baltic Vertical Datum – after adjustment with total
standard error of 0.18 m of height in the bare terrain and 0.3 m in
forested terrain. The model is based on the data acquired by altimetry
airborne laser scanning of the territory of the Czech Republic between
2009 and 2013. DMR 5G is established to analyse terrain situation at
local scale and character, for example, for land adaptations projecting,
transport, and water management projects planning, local natural
phenomena modelling, etc. DMR 5G is the fundamental source database
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for creating contours for maps at large scales and computer visualization
of altimetry in territorially oriented information systems at high level
of detail’.

We can find more detailed information about the DMR 5G product in
the official introduction documentation (Brázdil, 2012). LiteMapper
6800 mapping system by IGI GmbH is used for data collection. This
system uses Riegl LMS–Q680 laser scanner. In the documentation
(Brázdil, 2012), it is also declared that the lowest accuracy of about
0.21 m is obtained in the areas with low vegetation (grass). This value
was determined by empirical tests. The stated reason for the result is
the difficulty to automatically identify areas with low vegetation.

4.3 Measuring

All the measuring campaigns were realized in 2016 with the exception
of LiDAR from a conventional aircraft with realization in 2011.

4.3.1 Locality

The study area corresponds with Hornojiřetínská spoil heap, which
covers an area of about 6 km2 (Fig. 4.3). It is one of the largest spoil
heaps in the North Bohemian lignite basin, where more than 17 spoil
heaps after coal mining with total area about 150 km2 are located.
Approximately half of the spoil heap was technically reclaimed whereas
the other half was left to spontaneous succession. Therefore, it provides
a perfect environment to study the effects of technical reclamation
versus spontaneous succession on species diversity (Doležalová et al.,
2012). Many studies have been performed in this area, but they have
been limited to labour intensive field surveys. Comprehensive knowledge
of physical structure and composition of vegetation and terrain will
allow more detail study of species–environment relationships.
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Figure 4.3: Main part of Hornojiřetínská spoil heap (red line), area of
measuring (blue line) [source of orthophoto: mapy.cz].

The spoil heap consists of small lakes, low vegetation with scattered
shrubs, and forest areas. Only a part of Hornojiřetínská spoil heap
was planned as a study area (blue part in Fig. 4.3) because of the
restricted airspace around an important chemical plant Záluží (visible
in the right bottom part of Fig. 4.3). In reality, an even smaller parts
of the intended area were measured (see Fig. 4.4) during individual
campaigns for operational reasons, which are described in the following
sections.

4.3.2 Notes about UAV legislation

The legislation for commercial UAV operation in the Czech Republic is
issued by Civil Aviation Authority (CAA) of the Czech Republic and
the basic regulation are: an operator has to complete registration of an
UAV and pilot , pass practical exams, and arrange property damage
insurance to obtain flight permission. In addition to this, it is necessary
to fulfil some other administrative procedures and pay administrative
fees to obtain so called ‘permit for aerial work’.

59



Figure 4.4: Measured areas: AMA – violet, first UAV photogrammetry –
yellow, and second UAV photogrammetry – light blue (red lines bounds the
area of interest).

Minimal basic traffic rules are common for both commercial and recre-
ational operation in the Czech Republic. The maximum legal flight
height above terrain for any civil UAV is 300 m (less around airports,
etc.). It is prohibited to fly above inhabited areas (except for explicit
permission from CAA). Visual line of sight (VLOS) must be kept at
all times but the maximum VLOS distance is not specified in any
legislation.

In case of a 12 m long airship and good visibility, we have experience
with VLOS about 1 km (representing an area about 3 km2 in an ideal
situation).

4.3.3 AMA

Experimental measurement of a part of Hornojiřetínská spoil heap with
the AMA system was conducted on 17 March 2016. A flying height
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Figure 4.5: Digital surface model cross section from AMA measurement
(depth of cross section about 3 m).

was set to 80–100 m above the terrain. The assumed accuracy of the
measured data should be about 5–10 cm in case of correct system
calibration and the data ground resolution was about 15 points m–2

(depending on the flight speed and flight lines density). The density and
accuracy of the gathered data should be higher than for a conventional
aircraft-flown LiDAR.

Because of AMA petrol engine failure, only a part of the area of interest
was studied (the violet area in Fig. 4.4). The obtained data covered
bare ground as well as trees (see Fig. 4.5).

The basic output of the AMA system is a digital surface model in the
form of a georeferenced point cloud. Using LiDAR processing software
(e.g. LAStools), we can separate the digital terrain model (ground) and
other objects. The digital terrain model and digital surface model from
AMA of the same part and view are shown in Fig. 4.6 and 4.7.

4.3.4 Photogrammetry from fixed wing UAV

Measurement with this technology was carried out twice. The area
marked with yellow border in Fig. 4.4 was captured first on 29 April
2016, and the area marked with light blue in the same figure was
measured on 1 July 2016. The main reason for the second measurement
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Figure 4.6: Point base rendering of spoil heap part measured by AMA with
sample density about 15 point m−2 from an arbitrary isometric view.

was insufficient time for completing the whole area measurement on
the first day. The time schedule was more realistically arranged the
second time but the UAV operator could not find any suitable place for
take-off and landing to measure the northeastern part of the locality.

The data was captured during four individual flights because of the
limited flight endurance limit of the UAV that was used (same in both
days). Ground surface resolution was set to 25 mm. The maximum
possible image overlap of 80% was set for the longitudinal direction
because of the wooded character of some areas and time-balanced
overlap of 65% for the transverse direction. Altogether, about two
thousand images were taken in each day.

Processing was carried out with the software Agisoft PhotoScan Pro-
fessional version 1.2.4. Due the lack of precise differential GNSS on
used UAV we had to use GCPs for image geo-location and photogram-
metric project optimization. GCPs measured with real-time kinematic
(RTK) GNSS method were distributed throughout the study area (for
distribution of control and HCPs, see Fig. 4.8).

There were 153 GCPs divided into three categories, were geolocated
using the GNSS method RTK throughout the study area (see Fig.
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Figure 4.7: Separated ground points (digital terrain model) for the same area
(view) as in Fig. 4.6.

4.8).The first category contains 56 GCPs placed on bare ground without
any vegetation and marked with a sprayed red cross in reality (red
points in Fig. 4.8). The second category consisted of 36 HCPs located
also on vegetation-free ground (blue points in Fig. 4.8), and the last
category of 61 HCPs located on the ground with low vegetation (green
points in Fig. 4.8). GCPs are necessary for accurate photogrammetric
solution (localization and optimization of photogrammetric project).
Height check points were used only for outputs comparison and accuracy
analysis of the methods used. The output in the form of dense point
cloud (Fig. 4.9) was used for accuracy analysis.

In the parts with high vegetation, the bare ground was mostly not
detected due to technology limitations (see for example SPAR 3D,
2016) in contrast with laser scanning technology. The only exception is
broadleaf forest during plant dormancy.

4.3.5 LiDAR from conventional aircraft

Data collection in this part of the Czech Republic was carried out
during 2011. The average flight height was about 1200–1400 m above
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Figure 4.8: Distribution of ground control points (red), vegetation-free height
check points (HCPs) (blue), and HCPs on low vegetation (green).

the terrain (Brázdil, 2012). More information about the DMR 5G
products were presented in Section 4.2.3 on page 57.

4.4 Accuracy Analysis

Empirical accuracy analysis is based on height comparison between
the ground point cloud and HCPs divided into two categories (see
Section 4.3.4 on page 61). The height difference was computed for each
HCP using formula:

Δ𝐻 = 𝐻𝐺𝑁𝑆𝑆−𝑅𝑇 𝐾 − 𝐻𝑃 𝐶 (4.1)

where 𝐻𝐺𝑁𝑆𝑆–𝑅𝑇 𝐾 is the height of the HCP determined with GNSS
method RTK, and 𝐻𝑃 𝐶 is the height interpolated from the terrain point
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Figure 4.9: Visualization of dense point cloud from the first photogrammetric
measurement.

cloud at the geographical position of the HCP.

Then the height standard deviation 𝜎𝐻 and systematic error 𝑠𝐻 were
computed for each category and method using formulas:

𝜎𝐻 =
√︃∑︀𝑛

𝑖=1 Δ𝐻2
𝑖

𝑛
(4.2)

𝑠𝐻 =
∑︀𝑛

𝑖=1 Δ𝐻𝑖

𝑛
(4.3)

where 𝑛 is the number of HCPs in the category.

The minimum and maximum height differences were also recorded. The
open source software Cloud Compare was used for height interpolation
from the point cloud in the position of HCP.

4.4.1 Results

Accuracy analysis results were summarized in tables for clarity. Table
4.2 shows results for vegetation-free HCPs.
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Table 4.2: Accuracy analysis results for height check points (HCPs) on
vegetation-free surfaces (‘Phot.’ stands for photogrammetry).

AMA Phot. 1 Phot. 2 DMR 5G
𝜎𝐻 (m) 0.10 0.07 0.05 0.11
s𝐻 (m) -0.01 0.05 -0.02 -0.08
Maximum difference (m) 0.22 0.17 0.07 0.07
Minimum difference (m) -0.11 -0.05 -0.12 -0.29

Height standard deviation for the AMA system is on the inferior edge
of presumed accuracy. From the point of view of previous experience
(Koska et al., 2014), it seems that the problem is caused by insufficient
calibration of the measuring platform. The optimum calibration process
described by Koska et al. (2014) could not be repeated due to new
legislative restrictions for UAVs in the Czech Republic (it is not allowed
to fly above populated urban areas at all) and the old calibration was
disrupted during the development process. The used calibration was
carried out in an unsuitable configuration from terrestrial measurements
on the roof of our faculty (optimal cloverleaf pattern could not be kept).

The outputs of photogrammetric measurements are in accordance with
the expectation that in case of a correctly performed photogrammetric
project it is possible to achieve accuracy of about one pixel of image
GSR in the horizontal components and about 1.5–2 pixels of GSR in
the vertical component (Vorster and Strecha, 2013; Nocerino et al.,
2013). The GSR in this case was about 25–30 mm.

The result of the DMR 5G product is surprisingly good because its
provider states a significantly higher vertical standard deviation of
0.18 m for vegetation-free terrain.

Table 4.3 summarizes results for HCPs on the terrain with low vegetation
(grass). Results for all technologies are naturally worse than in case
of vegetation-free surfaces but the advantage of LiDAR/laser scanning
lying in better penetration of low vegetation is clearly evident. We can
also see much higher negative (determined terrain is mostly above GCPs)
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systematic error 𝑠𝐻 and higher maximum and minimum differences
generally for all technologies than in the first case.

The AMA system had the advantage of having been carried out earlier
in the vegetation season (in March) with low and weak grass.

Table 4.3: Accuracy analysis results for HCPs on the ground with low vege-
tation.

AMA Phot. 1 Phot. 2 DMR 5G
𝜎𝐻 (m) 0.16 0.11 0.38 0.16
s𝐻 (m) -0.02 0.00 -0.32 -0.13
Maximum difference (m) 0.40 0.35 0.13 0.08
Minimum difference (m) -0.40 -0.22 -0.85 -0.37

In the DMR 5G documentation (Brázdil, 2012), it is stated that the
biggest error (standard deviation) of about 0.21 m is obtained in the
areas with low vegetation (grass). The accuracy was determined by
empirical tests. The stated reason for the test result is the difficulty
to automatically identify areas with low vegetation for use of special
filters for bare ground determination. In the case of low vegetation,
it is also not possible to exploit the LiDAR multiple echoes recording
properly because of the minimum necessary interval between them is
of the order of metres. The standard deviation of the height is anyway
slightly better than is stated in the product documentation.

We can see a significant difference between the first and second mea-
surements in case of photogrammetry. The reason lies in the important
difference in the vegetation condition between end of April (29 April)
and beginning of July (1 July). Vegetation growth during these two
months was significant (see Fig. 4.10). It is not possible to reach better
results during full growing season with this technology.
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Figure 4.10: Vegetation difference between two photogrammetry campaigns
(29 April 2016 (left) and 1 July 2016 (right)).

4.5 Comparison of Other Characteristics

Besides accuracy, there are some other important characteristics of
the used technologies. The most important characteristics taken into
consideration are vegetation penetrability, data density, data collection
speed, and economic aspects.

4.5.1 Vegetation penetrability

It is a natural and generally known fact that unlike photogrammetry,
LiDAR can be used for bare ground measurements and determination
even in terrain with vegetation (e.g. SPAR 3D, 2016). In the case
of photogrammetry, the possibilities for ground determination in such
terrain are very limited but under specific conditions they are not
impossible as presented below.

It is obvious that LiDAR in contrast with photogrammetry needs only
a single direct optical connection between a sensor and the measured
point. This fact is clearly evident in resulting point clouds (see Fig.
4.11).
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In Figure 4.11, we can see that it is possible to photogrammetrically
measure bare ground in parts with broadleaf or sparse trees in mixed
forest near the dormancy (29 April 2016, red and blue points) in
contrast with the growing season (1 July 2016) when only the top part
of tree crowns and grass was recorded (green points). It is evident that
photogrammetry can be used for identification of bare ground in case of
dormancy and broadleaf forests. In such a case, it can be recommended
to acquire images with maximal possible overlap to ensure ‘seeing
through’ leafless branches.

Figure 4.11: One metre thick cross section through the part with mixed forest:
blue points – photogrammetry 29 April 2016, red points – photogrammetry 29
April 2016 with higher correlation resolution, green points – photogrammetry
1 July 2016, and white points – ground points from LiDAR (DMR-5G).

In Figure 4.12, we can see a cross section through a purely broadleaf
forest including AMA measurement. The AMA system equipped with
laser scanner with a quite narrow laser beam diameter (in comparison
with LiDAR from conventional aircraft) measures mostly the top part
of the tree crown and ground and occasionally also canopy, branches,
and trunk.

Photogrammetry was successful in identification of bare ground during
dormancy (29 April 2016, red and blue points) but in such case, trees
are not captured at all. In contrast, during growing season, (1 July
2016) only the top parts of tree crowns were measured (green points).

69



Figure 4.12: One metre thick cross section through the part with broadleaf for-
est: blue points – photogrammetry 29 April 2016, red points – photogrammetry
29 April 2016 with higher correlation resolution, green points – photogram-
metry 1 July 2016, white points – ground points from LiDAR (DMR-5G),
and brown points – AMA (17 March 2016).

At the end of this section, we can summarize that under specific condi-
tions and in contrast with general assumptions, we can photogrammet-
rically measure bare ground (during dormancy) and top parts of tree
crowns (during growing season) in the case of broadleaf forest.

4.5.2 Data density

Density of data recorded by the AMA system depends on the flight
height above terrain, flight speed, and density of flight lines. In the case
of operationally optimal project configuration, as in this experiment, it
leads to an average point density of about 15 points m−2 and average
point spacing of about 0.2 m.

In case of photogrammetry, data density depends on GSR of captured
images and on settings of input image degradation for dense point
cloud generation algorithms. For the average GSR of about 25 mm
and the 16× lower input image resolution for dense matching (medium
settings in Agisoft PhotoScan), this means an average point density
about 100–120 points m−2 and average spacing about 0.09 m.
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The DMR-5G product is distributed with point density of about
0.2 points m−2only, which means an average point spacing of about
1.8 m. Points are measured with higher density about of 1.6 points m−2

(spacing about 0.7 m) but the density drops especially in low rugged
areas due to density inhomogeneity and large data volume in general.

4.5.3 Data collection speed

The time scheduled for the AMA measurement of the whole area was
about three hours, but because of petrol engine failure of the AMA,
only a part of locality was measured. An important disadvantage of the
technology is the necessity for helium compression into high-pressure
cylinders after a mission, which takes about 5 h for the airship and
compressor that are used. The time needed for flight preparation is
about 2 h.

The photogrammetry from the fixed wing UAV was carried out using
four approximately 20 min long flights because of the flight endurance
limit of the UAV used but only half of the study area was measured
(see Section 4.3.4 on page 61). Two ground positions for landing and
take-off had to be used so altogether with relocation and flight settings,
the measurement took about 4 h. This is approximately the same time
as was necessary for GNSS measurement of necessary GCPs.

It is obvious that in case of LiDAR from a conventional aircraft, the
actual measurement is a matter of tens of seconds or a few minutes at
maximum.

4.5.4 Economic aspects

It is very difficult to assess the economic aspects of an experimental and
prototype technology such as the AMA project, but it seems that the
operating costs are somewhere between those of UAV photogrammetry
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and LiDAR from a conventional aircraft. It must be mentioned here
that the whole necessary equipment is very spacious (high pressure
cylinders and compressor are usually placed on a trailer) and it needs
at least two field operators. About 1 or 2 m3 of helium loss must be
also calculated to the operating costs for each helium compression into
cylinders.

According to a preliminary quotation by a company providing UAV
photogrammetry, the commercial price for mapping such an area (3 km2)
with GSR 30 mm and with standard outputs (dense point cloud, mesh
model, orthophoto) should be between 1000 and 2000 EUR depending
on the distance of the area and other aspects. But in this particular
case, the photogrammetric measurement of the whole area could not
be done because of the inaccessibility of the northeast part for small
UAVs.

Based on the information by the manager of Argus Geo System s.r.o.
(a company providing LiDAR from a conventional aircraft), the price of
measurement and point cloud output should be about 2000–4000 EUR
depending on the distance of the study area from their airport. On the
other hand, the DMR-5G product is available for the price of 23 EUR
for a 2 km × 2.5 km map sheet.

4.6 Conclusion

The experimental mapping system AMA equipped with LiDAR is first
introduced in this article. Other technologies and methods using UAVs
or conventional aircraft are then compared with the AMA system on
the basis of a practical project of medium size spoil heap mapping
(about 3 km2). The most important parameter in the comparison is the
accuracy of outputs but other relevant characteristics are also taken
into consideration, such as vegetation penetrability, data density, data
collection speed, and economic aspects.
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The results of the AMA system are on the inferior edge of presumed
accuracy – the vertical standard deviation is 10 cm in the case of
vegetation-free surfaces and about 16 cm in case of low vegetation.
From the point of view of previous experience and tests with better
results, it seems that it is caused by an insufficient calibration of the
measuring system. The optimal calibration process described by Koska
et al. (2014) could not be repeated due the new legislative restrictions
for UAVs in the Czech Republic (it is not allowed to fly above populated
urban areas) and the previous calibration was disrupted during the
development process. The calibration used was carried out in an
unsuitable configuration from terrestrial measurements on the roof of
our faculty (optimal cloverleaf pattern from two heights could not be
kept). Also, the high frequency of failure of the carrier used – airship
ACC15X from AirshipClub.com company – has proved to be a serious
issue as a result of which it was not possible to measure the whole
area. The ACC15X model is the first model from the producer that is
powered by a petrol generator and it still has some teething problems.

The application of photogrammetry from a fixed wing UAV showed that
the selected area is too large and its accessibility for this technology is
especially difficult. The measurement was carried out twice with this
technology and in both cases, only half of the proposed study area was
measured because we could not find any suitable place for UAV landing
and take-off to measure the northeast half of the study area.

The accuracy of photogrammetry outputs on the vegetation-free surfaces
is in accordance with the expectation that in the case of a correctly
performed photogrammetric project, it is possible to achieve an accuracy
of about one pixel of image GSR in the horizontal components and
about 1.5–2 pixels of GSR in the vertical component. In the case of
surfaces with low vegetation, the limited ability of this technology to
penetrate through the vegetation is clearly shown and the results are
significantly worse especially for the vegetation season. On the other
hand, under specific conditions, we can photogrammetrically measure
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the bare ground (during plant dormancy) and the tops of the tree
crowns (during the growing season) in case of broadleaf forests. The
advantages of the technology are a high density of acquired data (data
spacing up to the GSR) and lower operating/acquisition costs.

In the case of LiDAR from conventional aircraft, it seems that it achieves
higher accuracy than stated in product documentation in the study
area, namely 0.11 m on vegetation-free surfaces and 0.16 m on low
vegetation surfaces. The main advantage of this technology is the ability
to measure top surface and ground at the same time. The disadvantage
of this technology is a low data density. The next evaluation depends
on the product we consider. The disadvantage of the DMR-5G product
can be data obsolescence (data for the site are from 2011); contrary,
the significant advantage lies in acquisition costs which is only 46 EUR
(two map sheets) for the entire study area. In case of an individual
order of conventional aircraft LiDAR scanning, the data would be up
to date but the acquisition costs would be at least twice as high as for
the most expensive of remaining technologies (AMA).

Various technologies with different properties exist at present for map-
ping of medium sized areas (1–10 km2), which is why a lot of aspects
must be considered to make the right decision about which one to use.
Some of the most important aspects based on practical project were
hopefully outlined in this article.
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Abstract

Light detection and ranging has seen numerous applications across
multiple environmental disciplines. Regardless of the application, an
inevitable step of the point cloud processing is a ground filtering. Our
objectives were to evaluate the performance of six software solutions and
to assess the effect of vegetation and terrain on filtering accuracy. The
point clouds filtering and vertical accuracy were evaluated qualitatively,
quantitatively and by comparison with a GNSS survey. All tested
algorithms achieved good results but their performance was affected by
the terrain slope and vegetation cover. Algorithms performed better
in forests than in steppes with a high density of low vegetation. The
performance of all algorithms decreased with slopes over 15°. LAStools
provided overall well-balanced results in all environments. Recently
proposed algorithm implemented in PDAL has shown promising results,
particularly in forests. We suggest that software developers should
provide users with suggestions of optimal parameters for individual
environments.
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5.1 Introduction

Creating an accurate representation of the Earth surface has been
a fundamental goal of researchers in many environmental disciplines
(Moore et al., 1991). The most widely used representations of the
Earth’s surface are the Digital Surface Models (DSMs) and Digital
Terrain Models (DTMs). DSMs represent the Earth surface including
vegetation, buildings and other natural or man-made objects and can
be used, for example, for viewshed analyses (Klouček et al., 2015;
Lagner et al., 2018) or solar potential estimates (Fogl and Moudrý,
2016). In contrast, DTMs provide a bare earth representation of
terrain topography and is frequently used in environmental studies. For
instance, in the fields of hydrology (Sangireddy et al., 2016), species
distribution modelling (Bazzichetto et al., 2018; Moudrý et al., 2018),
digital soil mapping(Penížek et al., 2016; Baltensweiler et al., 2017), or
yield prediction (Kumhálová and Moudrý, 2014).

The ways of acquisition of accurate information on the 3D structure of
the environment have greatly expanded over the past two decades. In
particular, laser altimetry, commonly referred to as light detection and
ranging (LiDAR) or airborne laser scanning (ALS) has revolutionized
the quality of 3D representation of the environment and has become
the primary method for acquisition of accurate terrain information
(Wehr and Lohr, 1999). LiDAR pulses can penetrate through gaps
in vegetation canopies and register multiple returns representing both
above ground objects and terrain. The point clouds generated in
this way hence contain reflections from various features (e.g. ground,
vegetation, buildings). The acquisition costs of LiDAR data per unit
area have decreased considerably over the last two decades and the use
of LiDAR is therefore on the rise, especially for large scale projects
(e.g. Johansen et al., 2010). Furthermore, ALS data are increasingly
available and provided free of charge through government agencies in
many countries (e.g. Denmark, Poland, Estonia, Finland, Slovenia),
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which in turn leads to a greater use of the data in many disciplines
such as forestry (Chen et al., 2017), hydrology(Yang et al., 2014),
geomorphology (Chalupa et al., 2018), and ecology (Davies and Asner,
2014). Regardless of the application and a final product needed, an
inevitable and the most critical step of the point cloud processing
is the ground filtering (i.e., the process when points that represent
bare ground are separated from non-ground points representing objects
above the bare ground such as trees). The correct filtering (sometimes
called classification) of ground points is essential to the subsequent
creation of DSMs, DTMs or other derived products (Jakubowski et al.,
2013; Hawryło et al., 2017). The quality of the ground filtering also
affects the scale of the derived products, which is important for many
applications (e.g. Yang et al., 2014; Lecours et al., 2017; Šímová et al.,
2019). The point cloud filtering is therefore, besides being a crucial
component of any LiDAR dedicated software, also available in some
more complex geographic information systems (GIS) software solutions
such as ArcGIS (ESRI, 2014).

Many algorithms for ground filtering of ALS data have been designed
(e.g. Meng et al., 2009; Susaki, 2012; Rashidi and Rastiveis, 2017),
usually developed with some specific environment in mind (e.g. forests,
steppes; or urban areas; Shan and Aparajithan, 2005; Tinkham et al.,
2011; Maguya et al., 2014) and as each environment poses specific
challenges, the efficiency of the algorithms varies across environments.
While a dense forest canopy tends to block LiDAR pulses and therefore
to introduce gaps in the data, low vegetation can confound ground
filtering algorithms and be misclassified as a ground surface. Ground
filtering can be also challenging in regions with a complex topography
(Leitold et al., 2015).

The first comparison of ground filtering algorithms was performed by
Sithole and Vosselman (2004). More recently, Meng et al. (2010) re-
viewed critical issues of ground filtering algorithms and criteria for
their selection. With the increasing availability of ALS data and conse-
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quent implementations of ground filtering algorithms in various software
solutions, the attention focused on the performance of individual al-
gorithms has increased (Gonçalves and Pereira, 2010; Sulaiman et al.,
2010; Tinkham et al., 2011; Julge et al., 2014; Korzeniowska et al., 2014;
Montealegre et al., 2015; Polat and Uysal, 2015; Silva et al., 2018).

An overwhelming number of choices of the algorithms and their im-
plementations in various software solutions can easily leave an inex-
perienced practitioner daunted. On the other hand, most software
products implement only a single algorithm, which can lead users to
select a solution that is readily available but sub-optimal for a particular
environment. Furthermore, filtering methods usually require parameter
tuning and manual editing to achieve the best results (e.g. Wan et al.,
2018). Some software solutions allow advanced parameter settings,
thus giving the users an option to influence the results while on the
other hand posing higher demands on their experience. In contrast,
other software solutions try to be as simple as possible and require
minimal number of input parameters or allow only a few predefined
options. Another aspect that can influence the selection of algorithms
can be a lacking algorithm documentation and high software costs.
Some algorithms implemented in commonly used software are at least
partly described in the documentation. However, many ground points
filtering algorithms are considered proprietary knowledge and as such,
they represent a grey- or black-box solution.

With the ongoing development of new algorithms (Pingel et al., 2013;
Zhang et al., 2016) and their implementation in both LiDAR-dedicated
and complex GIS software, evaluation of the performance of these
algorithms in a variety of terrains and vegetation conditions is needed.
Therefore, in this study, we evaluated the performance of six ground
filtering algorithms contained in five frequently used software solutions.
In addition to algorithms evaluated by prior studies, we also assessed
relatively recent algorithms that have never been compared to others
so far (see Appendix 1 for overview of existing comparative studies).
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In particular, we: (1) evaluated the filtering error; (2) assessed the
accuracy of generated DTMs using field measurements as reference data;
and (3) assessed the effect of vegetation and terrain characteristics on
the performance of the individual algorithms in a complex non-natural
terrain (i.e., a spoil dump) overgrown with forest, steppe and grass
vegetation.

5.2 Material and Methods

5.2.1 Study area

The study area is located at Hornojiretinska spoil dump (north-west
Bohemia, Czech Republic, 50°34’N, 13°34’E) that covers an area of
approximately 450 ha. The spoil heap served as a deposit of the
overburden from brown coal mining. The spoil dump has never been
technically reclaimed and the terrain morphology thus remained rugged,
with areas of steep slopes resulting from heaping and consequently
developing heterogeneous vegetation (e.g. Frouz et al., 2018). To be
able to cover the entire study area with reference GNSS measurements
(see below), we limited the study area to a fraction of the dump –
30 hectares representative of different conditions on the spoil dump
(Fig. 5.1). In general, the terrain in the study area changes especially
in the south-north direction, from a flat area outside of the spoil heap
to slopes and the rugged terrain of the actual spoil heap (Fig. 5.1). The
vegetation includes grass, aquatic vegetation, steppes and forests. Five
areas with different vegetation and terrain character were manually
vectorised over an orthophoto, combining the orthophoto with our
knowledge of the area (Fig. 5.1, Tab. 5.1). Area I is outside the actual
spoil heap and is dominated by low grass with only a few scattered
trees. The terrain is flat with ditches alongside the gravel roads. Areas
II and III are dominated by low vegetation, especially bush grass
Calamagrostis epigejos and tall oat grass Arrhenatherum elatius, with
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dense shrubs and scattered trees such as elder Sambucus, rosehip Rosa,
common snowberry Symphoricarpos albus, birch Betula, or hawthorn
Crataegus. Area II also includes several terrain depressions that are
overgrown with common reed Phragmites australis and common cattail
Typha latifolia. Area IV is a forest dominated by willow (Salix spp.)
and alder (Alnus spp.) while Area V is a forest dominated by birch
Betula pendula. All Areas (except Area I) have undulated terrain with
steep slopes, small scale valleys and ridges (Fig. 5.1, Tab. 5.1).

Figure 5.1: Details of the study area. Ortophoto (a); Five areas with different
character of vegetation and terrain including the location of validation buffers
and checkpoints (b); Hillshaded model (c); Slope (d).
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5.2.2 LiDAR and Reference data acquisition

5.2.2.1 ALS data acquisition

A Riegl full-waveform laser scanner (LMS-Q780) was used for the ALS
data acquisition over the study area. The data were acquired by the
Flying Laboratory of Imaging Spectroscopy (FLIS) in May 2017. The
aircraft flight altitude was 1030 m above the ground level with a ground
speed of 110 knots. The scanner is based on a rotating mirror and
scans in parallel lines with a field of view of 60°, the wavelength is
1064 nm. The point density of the resulting point cloud was 7.7 points
per square meter. ALS data were processed using a proprietary software
of the CAS Global Change Research Institute (CzechGlobe), referenced
to the European Terrestrial Reference System, Universal Transverse
Mercator projection (ETRS UTM33N), and provided with elevations
as ellipsoidal heights.

5.2.2.2 Manual classification of point clouds
and survey of checkpoints

To properly assess classification success, reference data are necessary.
We randomly generated 50 point locations (10 point locations in each
of the Areas I-V); all points within a 5 m distance (hereafter buffers)
from those locations were selected as test points and manually classified
as ground and nonground. That resulted in 14,102 non-ground and
16,683 ground points used for the validation, respectively.

Compared to pre-existing studies (e.g. Montealegre et al., 2015), the
areas manually classified in our study for assessment of the filtering
performance are relatively large; this on the one hand improves the
overall validity of the study, it however on the other hand also increases
the risk of manual filtering errors that can still be present in our
evaluation dataset. Therefore, we also evaluated the vertical accuracy
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of DTMs using independent data obtained through a RTK GNSS survey.
The RTK GNSS survey was conducted during the early spring under
leaf-off conditions in 2017 and 2018 using Leica GPS1200 system. In
total, 1439 checkpoints distributed throughout the study area (Tab.
5.1, Fig. 5.1) were used. All check points were measured in ETRS89
with ellipsoidal heights and projected to UTM33N.

Table 5.1: General characteristics of the study area.

Area Num. of Slope [°] Height [m] Maximum

[ha] checkpoints Mean ± S.D. Mean ± S.D. height [m]

Area I grass 3.3 107 2.6 ± 3.6 5.9 ± 3.0 18.1

Area II shrub 10.9 437 4.8 ± 4.1 6.9 ± 4.0 24.2

Area III shrub 6.5 395 8.9 ± 5.4 5.8 ± 3.2 19.4

Area IV forest 5.2 170 5.7 ± 4.8 10.3 ± 4.3 23.8

Area V forest 5.0 330 9.6 ± 4.6 9.8 ± 3.6 21.5

Canopy Dens. of ground Density of Density of Density of

cover [%] & low veg. [%] shrubs [%] low trees [%] high trees [%]

(< 0.3 m) (0.3–3 m) (3–15 m) (> 15 m)

Area I grass 5.8 92.3 2.7 4.8 0.1

Area II shrub 22.8 72.7 8.3 18.0 0.9

Area III shrub 31.6 64.5 11.4 23.9 0.2

Area IV forest 70.4 29.1 6.5 54.9 9.5

Area V forest 60.2 40.5 3.1 52.8 3.7

Maximum, mean and standard deviations of height are calculated from a pit free
Canopy Height Model. Other characteristics are calculated directly from LiDAR
point cloud. Canopy cover is calculated as the number of first returns above breast
height (1.37 m) divided by the number of all first returns. Densities of ground,
shrubs and trees are derived as numbers of returns in each height interval divided
by a total number of returns. Slope is represented by a mean value ± standard
deviation.

5.2.3 Ground points classification algorithms

In this study, we compared six algorithms implemented in two open
source and three commercial software products that have been in-
creasingly used for ground point classification (Tab. 5.2). One of the
currently most popular software solutions for point cloud processing
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is Rapidlasso LAStools (rapidlasso.com), which has a unique position
among the tested programs – it is a commercial software but the limi-
tations of its free version are kept to minimum. Open source programs
CloudCompare (danielgm.net/cc) and PDAL (pdal.io) have also become
quite popular. Of the commercial software, we tested the ground classi-
fication algorithms implemented in the widely used programs ArcGIS
(esri.com) and Trimble Realworks (geospatial.trimble.com). In each
software, we started from default settings and through expert tuning
of the parameters (based on our experience with the tested algorithms
and our knowledge of the terrain and vegetation in the study area)
progressed to the best achievable results for each individual algorithm.

Table 5.2: List of evaluated software solutions, algorithms and their parame-
ters fine-tuned in this study.

Software Algorithm Author Number of Parameters

evaluated

settings

CloudCompare CSF Zhang et al., 2016 12

Predefined options: Steep slope, Relief, Flat; Cloth res. Slope processing: enabled/disabled

LAStools PTIN Isenburg, 2018 38

Step, Spike, Offset

ArcGIS ARC Esri, CA, USA 3

Predefined options: Aggressive, Standard, Conservative

PDAL PMF Zhang et al., 2003 30

Initial distance, Max distance, Max window size, Slope

PDAL SMRF Pingel et al., 2013 36

Scalar, Slope, Threshold, Window

RealWorks RW Trimble, CA, USA 1 -

CSF - Cloth Simulation Filter; PTIN - Progressive Triangulated Irregular Network;
PMF - Progressive Morphological Filter; SMRF - Simple Morphological Filter; Note
that ARC and RW are only abbreviations used for black-box algorithms implemented
in ArcGIS, and RealWorks, respectively. While other abbreviations are commonly
used.

Rapidlasso LAStools (rapidlasso.com/lastools) use a progressive trian-
gulated irregular network (PTIN) densification algorithm (Axelsson,
2000). This algorithm identifies the ground points with respect to the
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distance between each point and a generated triangulated irregular
network of lowest points. CloudCompare (danielgm.net/cc) uses a
newly proposed algorithm based on the cloth simulation filter (CSF;
Zhang et al., 2016). In this technique, the original point cloud is
at first rotated by 180 degrees and a simulated cloth is subsequently
“dropped” on the inverted surface, creating a simulated surface. In
PDAL (pdal.io), there are two different algorithms to choose from; a
Progressive Morphological Filter (PMF) (Zhang et al., 2003) and a
Simple Morphological Filter (SMRF) (Pingel et al., 2013). Both of
them use mathematical morphology operations such as erosion and
dilation to remove non-ground objects (Haralick et al., 1987; Zhang
et al., 2003). Both filters iteratively change the size of a moving window
to successfully remove objects of different size. The algorithms imple-
mented in ArcGIS (hereafter ARC) and Trimble Realworks (hereafter
RW) are grey-box algorithms with default settings only.

5.2.4 Quantitative and Qualitative validation

The classified point clouds were compared with manually classified
reference data to quantify the performance of individual classification
methods. We calculated the Type I error (omission error), representing
the percentage of ground points that are incorrectly classified as non-
ground as:

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑏

𝑎 + 𝑏
(5.1)

where 𝑎 is the number of correctly classified ground points and 𝑏 is the
number of ground points misclassified as non-ground points.

Type II error representing non-ground points incorrectly classified as
ground points was calculated as:

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 = 𝑐

𝑐 + 𝑑
(5.2)
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where 𝑐 represents the number of non-ground points misclassified as
ground points and 𝑑 stands for the number of correctly classified non-
ground points.

In addition, we calculated the success rate, i.e., the ratio between the
number of correctly classified points and the total number of points.

𝑆𝑢𝑐𝑐𝑒𝑠 𝑟𝑎𝑡𝑒 = 𝑎 + 𝑑

𝑒
(5.3)

where 𝑒 stands for total number of all points.

In addition, ground classified points were used to generate DTMs with
a cell size of 0.5 m. We used a bin-average method calculating the
elevation for each cell by assigning the average value of all points within
that cell. Areas containing no ground points were triangulated across
and linearly interpolated to determine their cell values. We used several
accuracy measures to assess the vertical accuracy of DTMs. The GNSS
survey, representing the most accurate data, was used as the reference
dataset (true elevation) to evaluate the DTMs. We first calculated
vertical differences among the 1439 surveyed point elevations and the
corresponding DTMs. Those differences were subsequently used to
calculate the mean error (ME) and root mean square error (RMSE).
We also calculated the normalized absolute deviation (NMAD), which
is a robust metric less sensitive to the presence of outliers (see Höhle
and Höhle, 2009).

It is a common approach in existing studies to compare algorithms
based on results obtained using parameters that resulted in the highest
filtering accuracy (Korzeniowska et al., 2014; Montealegre et al., 2015).
Parameter tuning, however, is greatly dependent on the user’s experi-
ence and the parameters are not always optimally tuned (e.g. Wan et al.,
2018). In our study, we calculated above mentioned quantitative metrics
for all evaluated parametrizations to assess whether the algorithms
tend to cause Type I or Type II error regardless of a parameters set.
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In other words, the “within algorithm variability” based on different
parametrizations was evaluated.

In addition to the above, we selected the best ground filtering setting
for each algorithm and performed both qualitative and quantitative
“between algorithms” comparison. The qualitative assessment consisted
of a visual examination and comparison of a shaded relief of the gener-
ated DTMs. To study the effect of the character of the environment
(i.e. the combined effect of vegetation and terrain), the assessment was
performed separately for each area (I-V, Fig. 5.1). These areas differ
mainly in vegetation character (i.e. grass, shrub, forest), however, they
also differ in terrain complexity (Tab. 5.1). Therefore, the effect of the
terrain on the filtering algorithms was also evaluated using the terrain
slope calculated from the national DTM of the Czech Republic (see
Moudrý et al. (2019) for more details about this dataset) and divided
into four categories (0°-5°, 5°-10°, 10°-15° and >15°). We tested for
the differences in the Type I error, Type II error, and Success rate
between areas (I - V) and classification algorithms using linear mixed
models, with an identifier of the 50 randomly distributed buffers as
random effect. We thus fitted three different models (one for each error
measure as a response variable) with algorithm and area as predictors,
including their interaction. Similarly, we tested whether the elevation
difference measured in the 1439 check points differed between areas and
algorithms, again using a linear mixed model with interactions. Statis-
tical analysis was performed using the R statistical software (R Core
Team, 2018), the models were fitted using lme4 package for R (Bates
et al., 2015), and statistical significance of the model fixed effects was
evaluated using Wald chi-square tests (function Anova in the package
car for R (Fox and Weisberg, 2011)).
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5.3 Results

5.3.1 Selection of best parameters

In total, 120 classifications were performed (Tab. 5.2). Type I and Type
II errors, and hence the RMSE, vary even within a single algorithm
depending on the settings. However, all algorithms achieved relatively
good results in terms of RMSE, no matter whether fine-tuning was
needed or whether software allowed only a few predefined options (Fig.
5.2). A general trend of individual algorithms can be observed regardless
of particular settings of the parameters (Fig. 5.3). SMRF, CSF and
RW successfully identified most of the ground points. However, they
often classified non-ground points as ground (i.e. have lower Type I
error than Type II error). In contrast, ARC, PTIN, and PMF showed
a lower tendency to classify non-ground points as ground, but not all
ground points were successfully identified (i.e. have lower Type II error
than Type I error).

5.3.2 Quantitative assessment:
Vertical accuracy, Type I and Type II errors

In the following sections, point clouds acquired with parameters achiev-
ing the best results for the individual algorithms will be compared. The
optimal sets of parameters in this respect was a set that resulted in
a terrain model with the minimum number of visually evident errors
(evaluated using shaded relief) and the lowest RMSE in combination
with the highest success rate for each algorithm. Where similar RMSEs
and success rates were obtained, parameters resulting in a lower Type
II error were selected. The summary of optimal combinations of param-
eters for our study area and their validation metrics are presented in
the Tab. 5.3. The RMSE ranged from 0.15 m to 0.21 m. PTIN yielded
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Figure 5.2: Performance of individual ground filtering algorithms throughout
calculations using different settings of optional parameters. The central hori-
zontal line in the box marks the median. The boxes show interquartile range
(25𝑡ℎ to 75𝑡ℎ percentile) and the whiskers show 1.5 times the interquartile
range.

the best result with the RMSE of 0.15 m, followed by SMRF (0.17 m),
ARC (0.18 m), PMF (0.18 m), CSF (0.19 m), and Trimble (0.21 m;
Tab. 5.3, Fig. 5.4). The success rate of point clouds filtered with the
optimal parameters for each algorithm ranged from 79.2% to 90.8%.
Success rates of all software solutions (with the exception of ARC) were
higher than 85%. CSF yielded the highest success rate (90.8%) closely
followed by RW (90.6%), both however have a notably high Type II
error (>15%). On the other hand, ARC yielded the lowest success rate
(79.2%), particularly due to the highest Type I error of all algorithms
(32.4%). The Type II error ranged from 0.5% to 19.2%. The lowest
Type II error was observed for PTIN (<1%) while the highest for CSF
(19.2%) and RW (15.3%). The lowest Type I error, on the other hand,
was obtained by the CSF (<1%).
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Figure 5.3: Comparison of algorithms’ tendency to yield Type I and Type
II error. Note that the use of CSF, SMRF and RW tends to cause Type I
error while PTIN, ARC and PMF tend to Type II error. The boxes show
interquartile range (25𝑡ℎ to 75𝑡ℎ percentile) and the whiskers show 1.5 times
the interquartile range.

5.3.3 Effect of vegetation and terrain

In our study area, we identified three problematic circumstances under
which classification algorithms were likely to fail: (i) sharp ridge/steep
slope; (ii) very dense vegetation and (iii) vegetation on slopes or in
ditches. The most notable deterioration of the classification results
caused by dense vegetation and vegetation on steep slopes was observed
for PMF and CSF algorithms (Fig. 5.4b, e). The terrain derived from
both PMF and CSF filters showed obvious erroneous peaks through-
out the study area that were caused by the vegetation and present
even in the area with prevailing grass vegetation (some shrubs and
dense vegetation in ditches were misclassified as ground; Fig. 5.4b, e).
RW filter tended to eliminate ground points excessively and result in
omission of many terrain features such as ditches and steep slopes in
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densely vegetated areas (Fig. 5.4g). PTIN, ARC and SMRF preserved
the terrain relatively well; however, they eliminated ground points and
partly omission some of the steep slopes and they did not remove the
very dense vegetation (Fig. 5.4c, d, f). It should be however noted that
at places (Fig. 5.4), the very dense vegetation formed an impenetrable
surface and only very few LiDAR pulses penetrated it; in other words,
in such places, almost no ground points were present in the raw data.
Where this was the case, any failures were more due to the problematic
character of the data itself than due to a problem with the algorithm.
For some algorithms, we were able to filter out even the dense vegetation
during a manual fine-tuning of the algorithms, it was however only at
the cost of failure at the ridges, the convex shape of which was then
not preserved (results not presented here).

Table 5.3: Best results achieved by evaluated algorithms.

Algorithms RMSE ME NMAD Type I Type II Success Parameters

error error rate

[m] [m] [m] [%] [%] [%]

CSF 0.19 0.13 0.13 0.9 19.2 90.8

General parameters setting: Flat; Slope processing: enabled; Cloth resolution: 0.2

PTIN 0.15 0.10 0.11 18.6 0.5 89.7

Predefined: Nature

ARC 0.18 0.12 0.13 32.4 7.1 79.2

Ground detection method: Standard

PMF 0.18 0.08 0.11 23.3 3.9 85.6

Exponential: true; Initial distance: 0.15 ; Max distance: 2.5 ; Max window size: 10 ; Slope: 1

SMRF 0.17 0.11 0.12 15.7 9.1 87.3

Scalar: 1.25 ; Slope: 0.15 , Treshold: 0.05 ; Window: 18

RW 0.21 0.13 0.13 4.5 15.3 90.6 -

CSF - Cloth Simulation Filter; PTIN - Progressive Triangulated Irregular Network;
PMF - Progressive Morphological Filter; SMRF - Simple Morphological Filter; Note
that ARC and RW are only abbreviations used for black-box algorithms implemented
in ArcGIS, and RealWorks, respectively. While other abbreviations are commonly
used.

The results indicate a contrasting performance of the algorithms in
the five areas of different environment character (Tab. 5.4, Tab. 5.5).
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Figure 5.4: Hillshaded surface models generated from unfiltered point cloud
(a) and point clouds filtered using CSF (b), PTIN (c), ARC (d), PMF (e),
SMRF (f), RW (g) algorithm. Note the problematic area - right bottom
corner - of very dense vegetation that formed an impenetrable surface and
only very few LiDAR pulses penetrated it.

The effects of the area, algorithm and their interaction on elevation
difference, Success rate, Type I and Type II error were statistically
significant (Tab. 5.6, see Appendix 2 and 3 for boxplots). In areas
dominated by shrub vegetation (Areas II and III), the RMSE ranged
from 0.17 m to 0.23 m (Area II) and from 0.16 m to 0.21 m (Area III).
PTIN, PMF and SMRF yielded the best results with RMSE ≤ 0.20 m
in both areas (see Appendix 4 for box plots of vertical differences). In
addition, PTIN and PMF yielded the lowest Type II error. The average
success rate ranged from 72.1% to 86.9% and from 76.4% to 89.7% for
Area II and Area III, respectively. CSF and RW often misclassified
non-ground points as ground and have therefore the highest Type II
error in the shrub vegetation of all evaluated algorithms. All algorithms
performed better in the forested areas than in the shrub vegetation,
which is likely caused by the fact that in forests, there is a relatively
lower representation of low vegetation (see Tab. 5.1) bearing a profound
effect on misclassification, especially in combination with steep slopes.
In forests, RMSE ranged from 0.16 m to 0.33 m and from 0.12 m to
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0.22 m for Area IV and Area V, respectively (see Appendix 4 for box
plots of vertical differences). All algorithms yielded average success
rates greater than 90% except for ARC. The best results in forested
areas were yielded by PTIN and SMRF. Finally, PMF and PTIN
algorithms were the most suitable options in the areas dominated by
grass vegetation with respect to classification accuracy (see range of
success rate in Tab. 5.5) but PMF was not able to remove all vegetation
in ditches (Fig. 5.4e). The increasing slope of the terrain resulted in
deterioration of the terrain accuracy with the most evident decrease
on steep slopes (greater than 15°; Tab. 5.7). The most accurate and
consistent results with respect to the terrain slope was obtained by
PTIN and SMRF. PMF also provided very good results but a significant
drop in accuracy was detected even at intermediate slopes (10°-15°).

5.4 Discussion

In this study, we evaluated the performance of six ground filtering
algorithms. In principle, two error types can occur while filtering
ground points of LiDAR data. The first error type is the failure to
identify true ground points, classifying them as non-ground objects
(omission error), the other type is incorrect classification of non-ground
points as bare earth (commission error) (e.g. Sithole and Vosselman,
2004; Korzeniowska et al., 2014; Montealegre et al., 2015). Ideally, one
would compare all points to calculate the omission and commission
error. However, this is impractical due to a large number of points
recorded. Therefore, an approach using randomly sampled points is
usually used (e.g. Montealegre et al., 2015) and was also used in our
study.

Our results show that some algorithms tend to Type I error while others
towards Type II error and they do so regardless of the parameter setting
and vegetation character (which does not necessarily apply to other
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areas not tested in our study, especially to urban environment). Sithole
and Vosselman (2004) raised the question whether or not filtering
algorithms should be fine-tuned towards the reduction of Type I errors,
even if this is at the expense of an increase in Type II errors as Type
II errors are considered conspicuous and therefore easy to remove by
manual editing. Some algorithms in our study tended to cause Type I
error (PTIN, ARC and PMF) while others tended more to the Type
II error (CSF, SMRF and RW).In contrast, Sithole and Vosselman
(2004) found that most algorithms produced Type I errors than Type II
errors. There is always a trade-off between resulting Type I and Type
II errors, all the more due to the fact that usually, one of those two
types of error is considered more serious than the other, depending on
the application of the filtered data. For some applications, Type I error
is considered less costly and not a serious handicap due to further point
cloud processing, such as applications that do not require DTMs with
sub-meter resolution (e.g. applications in forestry at plot and larger
scales; e.g. Frazer et al., 2011). It can be assumed that gaps caused
by misclassified ground points are filled by interpolation and hence do
not create an issue. On the other hand, hydraulic modelling would
require very accurate DTMs and such gaps would be a serious drawback
(e.g. French, 2003).

Our results show obvious differences between the performances of
ground filtering algorithms in areas with different vegetation cover
(i.e. grass, shrub, forest) and terrain complexity (i.e. slope). In general,
all filters performed similarly well in the area of low complexity charac-
terized by grass vegetation and flat terrain. However, with increasing
terrain complexity and vegetation density, error rates caused by the
filters increased. This corroborates findings of previous studies that
also highlighted that vegetation and terrain character have a serious
effect on the success of filtering algorithms (e.g. Tinkham et al., 2011;
Korzeniowska et al., 2014; Montealegre et al., 2015). In particular, sites
with low vegetation and shrubs were problematic for all algorithms and
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resulted in a higher Type II error than forested areas. Parts of the
vegetation were incorrectly classified as ground points due to similarities
in the distribution of points (i.e. their slope and elevation differences).
In particular, CSF, ARC, SMRF and RW tended to misclassify non-
ground objects (e.g. low shrubs) as ground, thus having a high Type
II error. On the other hand, the performance of PTIN and PMF was
relatively good even in the shrub vegetation with relatively low Type II
error and RMSE approximately 0.17 m; PMF however showed obvious
erroneous peaks or bumps on the shaded relief map. For all algorithms,
the tendency to cause Type I or Type II error was consistent across the
vegetation types. The only exception was RW with a high tendency
to Type I error in forests while to Type II error in shrubs (Tab. 5.5).
This can be attributed to the fact that Realworks is primarily designed
for Terrestrial laser scanning (TLS), and although it has also been
successfully used for photogrammetric point clouds (Kršák et al., 2016),
it is not well suited for ALS data. The increased slope also negatively
affected the algorithms’ performance. Most of the evaluated algorithms
showed relatively good results for slopes up to 15°; with slopes over
15°, however, the performance of all algorithms decreased rapidly. The
algorithm showing the lowest vulnerability by slope was PTIN, which
corroborates results by Montealegre et al. (2015).

It should be noted that in this study, we concentrated mostly on the
quantitative measures of the algorithm performances, although visual
qualitative evaluation of generated DTMs was also performed. A more
complex qualitative validation (for example, through the number of
properly preserved terrain features) would however require a larger
study area (Sithole and Vosselman, 2004; Montealegre et al., 2015).
This would however be incompatible with our effort to cover whole area
with GNSS measurements.

Existing studies followed two different approaches in terms of datasets
used. While some studies (e.g. Sithole and Vosselman, 2004; Meng
et al., 2009; Pingel et al., 2013; Zhang et al., 2016) used datasets
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prepared solely for such purposes by the International Society for
Photogrammetry and Remote Sensing (ISPRS), others used their own
datasets (Korzeniowska et al., 2014; Montealegre et al., 2015; Stereńczak
et al., 2016). The ISPRS data consist of several LiDAR datasets with
varying degree of vegetation, terrain character and density and the
nature of man-made structures (e.g. buildings, bridges). The undisputed
advantage of the use of the same input data in all experiments and
a consequent creation of a large database of results lies in a better
comparability of results among individual studies. It is particularly
beneficial when a new algorithm is developed and an assessment of its
performance, together with its comparison with existing algorithms, is
needed (e.g. Pingel et al., 2013). On the other hand, many studies prefer
to test existing algorithms with their own data, particularly due to the
fact that landscapes are often very specific in their terrain, presence
of manmade objects and vegetation character and such individual
approach is therefore necessary (e.g. Stereńczak et al., 2016). Such
studies can be motivated by the need of accurate DTMs for specific
purposes (e.g. application in forestry; Montealegre et al., 2015) and
bring therefore additional benefits for the particular purposes, such as
expanding our understanding of behaviour of filtering algorithms in
different environments. Similarly, our study was motivated by a project
that required accurate terrain models for analysis of post-mining sites,
the character of which is very specific with respect to both terrain and
vegetation (e.g. Moudrý et al., 2019).

Most existing comparative studies used collections of different algo-
rithms (e.g. Sithole and Vosselman, 2004) or focused on the implementa-
tion of multiple algorithms into an open source software (e.g. Monteale-
gre et al., 2015). Few authors evaluated also algorithms implemented to
commercial software (e.g. Korzeniowska et al., 2014) as it is expensive
and thus available only for large companies or research centres. We
evaluated algorithms implemented in both commercial and open source
software; however, evaluation of proprietary algorithms in commercial
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software is complicated due to the unavailability of their description.
For example, ESRI answered to our query on the algorithm imple-
mented in ArcGIS: “The classification method used by the Classify
LAS Ground tool is a comprehensive proprietary solution that does
not fit in the given classes of algorithms, and no information has been
published regarding the technique which is used”. This complicates
the use of such software for ground classification. As we have shown,
the algorithm performances vary among environmental conditions and
users need to know whether a particular algorithm (or some of the
predefined settings) is suitable for a particular environment (e.g. forest,
shrubs) (Sithole and Vosselman, 2004; Montealegre et al., 2015). More-
over, fine-tuning is usually necessary for proper ground classification
in different environments and algorithms implemented in commercial
software often only allow predefined options (but see Wan et al. (2018)
for automated tuning of ground filtering algorithms). However, such
“black box” algorithms do not necessarily produce worse results and
despite the high Type I error, the algorithm implemented in ArcGIS
performed quite well, particularly in forest areas. However, its high
initial costs are a serious drawback.

5.5 Conclusions

All tested ground filtering algorithms achieved relatively good results
but their performance is notably affected by the terrain slope and vege-
tation cover. With increasing slope, the performance of the algorithms
tends to deteriorate with a noticeable drop at terrain slope over 15°.
Algorithms performed better in forests than in steppes with a high
density of low vegetation. In our study area, PTIN implemented in
LAStools provided the best overall results, although some other algo-
rithms performed better in specific environments. For example, the
recently proposed SMRF algorithm has shown promising results in the
forests.
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The list of algorithms used in this study is not comprehensive and we are
aware that other algorithms are available. We concentrated on popular
open source software and recently developed algorithms that have not
been previously tested (e.g. SMRF, CSF). Of the commercial software,
we used solutions available to us. Such bias is almost inevitable and also
obvious in prior studies in which authors usually evaluated algorithms
that are easily available or those which the authors have experience
with (see Appendix 1 for overview of existing comparative studies).

It is evident from our results and from prior studies that to achieve
the optimal filtering performance, the selection of the algorithms and
parameter settings should be guided by a specific landscape type. Such
principle is for example implemented in LAStools, which allows users
to select a set of parameters for a particular landscape (e.g. nature or
town). It is worth mentioning that results for PTIN algorithm with such
predefined settings implemented in LAStools are the best of all software
tested, which only confirms the value of that approach. Until more
automated approaches for parameters estimation will be developed, we
can suggest this approach also to other software developers.
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Table 5.4: Comparison of six algorithm s in five areas of diffe rent vegetatio
n structure (LiDAR DTM and GNSS differences).

Area Algorithm Number of RMSE ME NMAD

checkpoints [m] [m] [m]

CSF

107

0.04 −0.01 0.04

PTIN 0.05 −0.02 0.04

Area I ARC 0.04 −0.01 0.04

(grass) PMF 0.05 −0.02 0.04

SMRF 0.05 −0.02 0.04

RW 0.04 −0.01 0.04

CSF

437

0.23 0.20 0.12

PTIN 0.18 0.15 0.11

Area II ARC 0.21 0.18 0.11

(shrub) PMF 0.17 0.14 0.10

SMRF 0.20 0.16 0.10

RW 0.22 0.19 0.11

CSF

395

0.19 0.14 0.12

PTIN 0.17 0.11 0.11

Area III ARC 0.18 0.13 0.11

(shrub) PMF 0.16 0.08 0.10

SMRF 0.18 0.11 0.11

RW 0.21 0.13 0.12

CSF

170

0.18 0.13 0.11

PTIN 0.17 0.10 0.11

Area IV ARC 0.18 0.13 0.12

(forest) PMF 0.16 0.09 0.11

SMRF 0.18 0.11 0.11

RW 0.33 0.16 0.15

CSF

330

0.13 0.07 0.10

PTIN 0.12 0.06 0.10

Area V ARC 0.13 0.07 0.10

(forest) PMF 0.22 0.04 0.10

SMRF 0.13 0.07 0.10

RW 0.14 0.07 0.11

CSF - Cloth Simulation Filter; PTIN - Progressive Triangulated Irregular Network;
PMF - Progressive Morphological Filter; SMRF - Simple Morphological Filter; Note
that ARC and RW are only abbreviations used for black-box algorithms implemented
in ArcGIS, and RealWorks, respectively. While other abbreviations are commonly
used.
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Table 5.5: Comparison of six algorithms in five areas of different vegetation
structure (classification error).

A
re

a Algo. Type I error Type II error Succes rate

Mean ± S.D. Min Max Mean ± S.D. Min Max Mean ± S.D. Min Max

A
re

a
I

(g
ra

ss
)

CSF 0.5 ± 1.04 0 3.1 21.5 ± 37.38 0 87.5 93.3 ± 18.16 41.8 100

PTIN 16.8 ± 11.65 5.1 34.6 2.4 ± 5.29 0 11.8 84.2 ± 10.66 65.4 96.6

ARC 26.7 ± 4.96 16.6 32 4.6 ± 6.5 0 15.7 76.4 ± 4.76 69.3 83.4

PMF 10.4 ± 10.02 0 29.4 3.5 ± 4.86 0 11.8 91.4 ± 7.86 79.5 100

SMRF 19.2 ± 9.11 10.4 39.1 7.1 ± 9.18 0 21.7 81.5 ± 8.63 60.9 89.7

RW 0.7 ± 1.11 0 3.1 17.7 ± 31.06 0 72.7 94.3 ± 15.18 51.3 100

A
re

a
II

(s
hr

ub
)

CSF 3 ± 4.71 0 13.3 51.1 ± 40.3 0 99.3 82.4 ± 18.47 44.6 100

PTIN 24.8 ± 12.19 2.7 46.7 0 ± 0.11 0 0.3 86.9 ± 9.27 74.8 98.3

ARC 38.3 ± 6.14 27.6 48.6 20.5 ± 18.16 0 54.2 72.1 ± 12.98 55.4 97.8

PMF 31.3 ± 15.57 6.7 52 7.4 ± 8.66 0 23.2 77.5 ± 13.03 61.2 99.6

SMRF 26.1 ± 16.62 3.6 53.3 19.9 ± 22.09 0 69.9 80.6 ± 9.72 65.5 97.1

RW 22 ± 41.23 0 100 34 ± 29.28 0 95 85.6 ± 10.72 61.3 98

A
re

a
II

I
(s

hr
ub

)

CSF 0.7 ± 0.82 0 2.3 28.9 ± 29.31 1.1 100 87.3 ± 11.69 66 99

PTIN 15.5 ± 14.04 1.4 39.7 0 ± 0 0 0 89.7 ± 12.85 61.5 99.5

ARC 36.4 ± 3.2 31 41.9 11.1 ± 15.57 0 52.3 76.4 ± 9.03 61.9 89.4

PMF 34.9 ± 9.28 22.6 49.5 5.4 ± 7.22 0 24.1 79.5 ± 9.07 61.4 88.1

SMRF 9.8 ± 3.86 4.5 16.8 13.4 ± 17.2 0 58 88.5 ± 5.52 79.3 96.6

RW 6.4 ± 9.12 0 29.9 21.2 ± 28.61 0 96 88.2 ± 8.65 77.2 97.8

A
re

a
IV

(f
or

es
t)

CSF 0.9 ± 1.83 0 5.7 4.2 ± 5.15 0 15.4 96.7 ± 3.61 90.8 100

PTIN 22.8 ± 20.34 3.7 67.5 0 ± 0 0 0 93.9 ± 6.29 79.5 99.4

ARC 38.8 ± 7.78 27.2 53.8 1.2 ± 2.27 0 7 89.6 ± 4.76 77.9 94.4

PMF 21.7 ± 13.19 3.4 41.4 1 ± 1.22 0 3.9 93.4 ± 4.77 82.7 97.8

SMRF 16.9 ± 12.6 2.6 45.5 1.7 ± 2.95 0 9.2 94.9 ± 2.06 91.8 97.3

RW 33.9 ± 33.1 2.3 100 2.5 ± 4.05 0 12.7 91.6 ± 5.39 82.4 98.6

A
re

a
V

(f
or

es
t)

CSF 0.1 ± 0.16 0 0 7.8 ± 6.9 0 22 95.4 ± 3.98 87 100

PTIN 7 ± 8.44 0 23.5 0 ± 0 0 0 96.8 ± 4.26 88.2 100

ARC 28.6 ± 4.3 20.6 34.4 4.2 ± 4.48 0 11.8 85.6 ± 4.33 80.3 92.6

PMF 16.4 ± 4.36 7.4 22.4 4.1 ± 4.12 0 11.3 90.8 ± 3 85.6 95.7

SMRF 3.2 ± 2.68 1.2 9.7 6.1 ± 6.21 0 18.8 95 ± 3.68 87.5 99.2

RW 2.3 ± 3.74 0. 12.1 7.2 ± 7.26 0 22 95 ± 3.98 87.2 100

The maximum, minimum, mean and standard deviation of error are calculated from
10 buffers in each of the Areas I-V.
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Table 5.6: Significance of the effect of algorithm, area, and their interaction
on Type I error, Type II error, Success rate, and elevation difference.

Type I error Type II error

Fixed effect 𝜒2 stat. DF P 𝜒2 stat. DF P

Algorithm 197.757 5 < 10−16 126.184 5 < 10−16

Area 32.324 4 1.6·10−6 15.361 4 0.0040

Interaction 62.182 20 3.3·10−6 81.233 20 2.4·10−9

Success rate Elevation difference

𝜒2 stat. DF P 𝜒2 stat. DF P

Algorithm 67.897 5 2.8·10−13 463.049 5 < 10−16

Area 35.892 4 3.0·10−7 317.745 4 < 10−16

Interaction 37.038 20 0.0116 80.946 20 2.7·10−9

Table 5.7: The effect of the terrain slope on the filter accuracy. Evaluated by
RMSE calculated for four slope categories.

Algorithm Slope
0° - 5° 5° - 10° 10° - 15° > 15°

CSF 0.17 0.18 0.19 0.24
PTIN 0.14 0.15 0.17 0.22
ARC 0.16 0.17 0.19 0.24
PMF 0.13 0.14 0.27 0.22

SMRF 0.15 0.16 0.18 0.23
RW 0.19 0.21 0.23 0.27

Num. of checkpoints 557 506 245 131
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Abstract

Mining is an important human activity that significantly affects the
landscape character, particularly through excavation of spoil material
and its deposition on spoil banks. The information on terrain or vege-
tation cover of spoil banks is often required for two different reasons:
(i) to monitor and prevent adverse effect of hazards associated with
unstable terrain; and (ii) to assess restoration success. Traditionally
used in situ methods for monitoring surface displacement or restora-
tion success are restricted in terms of spatial and temporal coverage.
Therefore, in this study, we assessed the value of photogrammetrically
and Light Detection and Ranging (LiDAR) derived point clouds for
characterizing a post-mining site. We acquired images under leaf-off
and leaf-on conditions and showed that point densities of point clouds
acquired photogrammetrically under leaf-off conditions exceeded densi-
ties of those acquired under leaf-on conditions and uniformly covered
ground of the entire study area (an average density of 288 points per
m2). In addition, the accuracy of the digital terrain model (DTM; 1 m
resolution) derived from images acquired under leaf-off conditions was
comparable to the LiDAR-derived DTM (RMSE of 0.19 m and 0.12 m,
respectively). While LiDAR-derived DTM accuracies were consistent
across vegetation categories (RMSE 0.12–0.14 m), accuracy of image-
based DTMs declined in the following order: forest (RMSE 0.15 m),
steppes (RMSE 0.21 m), and aquatic vegetation (RMSE 0.36 m). We
suggest the leaf-off UAV imagery as a viable alternative for building
DTMs that can be utilized for assessment of risks associated with
instability of spoil banks terrain. In addition, we also suggest that a
combination of acquisitions under leaf-off and leaf-on conditions have a
potential to replace expensive airborne LiDAR surveys for applications
requiring information on vegetation cover or vegetation height.
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6.1 Introduction

Mining is an important human activity with strong social, environmen-
tal, and economic impacts (Lechner et al., 2017). It significantly affects
landscape character, including ecological stability (Hendrychoviá and
Kabrna, 2016; Popelková and Mulková, 2018), aesthetic value (Svo-
bodová et al., 2012), and morphology (Tarolli and Sofia, 2016; Brown
et al., 2017). Open-pit mining and associated extensive disturbances,
especially within the coal mining industry, significantly influence large
areas. This involves formation of large pits as well as deposition of the
excavated spoil material on spoil banks.

Mining is in general associated with geomorphic processes such as ero-
sion, subsidence, landslides and runoff (Tarolli and Sofia, 2016). This is
particularly true for spoil banks that are for various reasons (e.g. slope
inclination, composition of waste material, subterranean combustion),
especially prone to erosion (Haigh and Gentcheva-Kostadinova, 2002;
Hancock et al., 2008; Nyssen and Vermeersch, 2010), terrain subsidence
(Bell and Donnelly, 2006; Dulias, 2016; Sedlák et al., 2018), and land-
slides (Steiakakis et al., 2009; Cho and Song, 2014; Bednarczyk, 2017;
Wasowski et al., 2018). To be able to study these processes or even to
identify instability problems and to prevent potential adverse effects of
such events (or at least minimize their impact), the knowledge of spoil
banks terrain and vegetation cover is essential. Besides, spoil banks
have been shown, curiously enough, to become important biodiversity
refuges (e.g. Harabiš et al., 2013). Hence, information on the terrain
and vegetation cover of spoil banks is not only needed for studying geo-
morphic processes but is also useful for assessment of their conservation
value (Doležalová et al., 2012) and for understanding factors affecting
the successional trajectory (Frouz et al., 2018) or restoration success
(Vymazal and Sklenička, 2012; Wortley et al., 2013).

To efficiently manage spoil banks, namely for detection and quantifi-
cation of terrain changes (e.g. Xiang et al., 2018) or terrain stability
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analyses (e.g. Close et al., 2016; Stephenne et al., 2014; Zalesky and
Capova, 2017), repeated topographic surveys and information on vege-
tation cover are required. The traditional techniques used to monitor
spoil banks terrain such as total station and GNSS surveys are expensive
and restricted in terms of spatial and temporal coverage (e.g. Zalesky
et al., 2008; Hogarth et al., 2017). Similarly, terrain topography and
vegetation cover used by restoration ecologists are usually determined
by spatially limited and simple categorical variables due to the labour
intensive field collection of data (e.g. Šálek, 2012; Harabiš et al., 2013;
Vojar et al., 2016). A great benefit of remote sensing over more tradi-
tional techniques lies in its ability to provide continuous information
over a large area. However, references to the use of remotely sensed
data for monitoring or restoration success assessment of post-mining
sites are scarce (Wężyk et al., 2015; Cordell et al., 2017; Koska et al.,
2017; Ćmielewski et al., 2018).

Remote sensing methods commonly used to collect data for generation
of digital terrain models (DTMs) and derivation of vegetation cover
variables include terrestrial and airborne light detection and ranging
(LiDAR; Wehr and Lohr, 1999) and, more recently, structure from
motion (SfM) and multi-view stereo (MVS) photogrammetry workflows
(Fonstad et al., 2013; Smith et al., 2016). Although airborne laser
scanning (ALS) data are increasingly available, sometimes even free of
charge (in some European countries, for example, they are available
through government agencies; e.g. Fogl and Moudrý, 2016; Langhammer
et al., 2018), the coverage is still lacking in many countries (e.g. Hofierka
et al., 2018) and high acquisition costs limit a wider use of the data
when repeated measurements are needed. In contrast, photogram-
metric methods offer low-cost alternatives for repeated measurements,
especially so in combination with unmanned aerial vehicles (UAVs),
which makes such a combination a potentially valuable and practically
applicable tool for monitoring of terrain and vegetation cover changes
(e.g. van Iersel et al., 2018; Xiang et al., 2018).
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Figure 6.1: Study Area. (A) Hill-shaded terrain and location of the study
area in the southern part of the Hornojiřetínská spoil heap in the Most
basin (north-west Bohemia, Czech Republic, 50°34´N, 13°34´E); (B) Spring
orthophotomap; (C) Summer orthophotomap; (D) Winter orthophotomap;
(E) Canopy height model. The study plots were used for visual comparison
of DTMs, see Fig. 6.4.

The DTM generation is however affected by vegetation cover and the
prospects to acquire accurate DTMs under dense vegetation canopies
are limited. Spoil banks are usually covered by heterogeneous vegeta-
tion, which further complicates the use of photogrammetric methods.
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Negative effects of vegetation on building of DTMs have been reported
for various types of environment and vegetation cover. Forested areas
are among the most challenging environments and failure to record a
single ground point in such areas is not uncommon. For this reason,
recent studies on the use of photogrammetric methods in forests mostly
focus on partially open canopies. For example, Kachamba et al. (2016)
derived a DTM from UAV imagery in order to estimate biomass at
miombo woodlands. Jensen and Mathews (2016) showed that in a
woodland ecosystem in Texas, SfM DTM provided a suitable repre-
sentation of the bare ground under a vegetation cover (compared to
LiDAR-derived DTM). More recently, Tomaštík et al. (2017) assessed
the quality of a DTM under temperate broadleaf and mixed forests
derived from UAV imagery with different level of canopy openness.

The obvious advantage of LiDAR is the ability of the pulses to penetrate
through gaps in vegetation canopies and registering multiple returns
representing both canopy and terrain. Many studies concentrated on
the accuracy of LiDAR-derived DTMs in dense forest environments
that might be difficult to penetrate even for LiDAR pulses, such as
tropical forests (e.g. Clark et al., 2004) or temperate coniferous forest
(e.g. Reutebuch et al., 2003). Only few studies, however, concentrated
recently on temperate deciduous forests, which are among the principal
canopies in our study. For example, Aryal et al. (2017) evaluated a
DTM accuracy in temperate forests of Bavarian forests national park,
Balenović et al. (2018) in an oak forest in Central Croatia, and Simpson
et al. (2017) in mixed deciduous woodland in northeast England.

In the case of deciduous forest stands, a promising strategy to generate
accurate DTM is to use images acquired under leaf-off conditions –
an approach that has been only scarcely tested for photogrammetric
methods (Dandois and Ellis, 2013; Ni et al., 2015; DeWitt et al., 2017)
but commonly used for ALS data acquisition (e.g. Hodgson et al.,
2005). Bare ground is clearly visible on the leaf-off imagery and the
DTM accuracy similar to that derived over non-vegetated surfaces can
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be therefore expected; however, leaf-off imagery may include complex
shadowing and branch patterns and the quality (and extent) of the
terrain visibility strongly depends on the density of forest stands.

The general aim of this study was to assess the value of photogrammet-
rically and LiDAR-derived data for characterizing a post-mining site.
We acquired ALS data during summer (leaf-on period) and UAVborne
imagery during different seasons (summer, spring, winter) and we (1) as-
sessed the character of the generated point clouds with emphasis on
the ability to capture bare earth and compared results yielded by both
methods; (2) assessed whether the accuracy of SfM-derived DTMs can
be improved by acquisition of images under leaf-off conditions and
hence potentially used in combination with leaf-on conditions to esti-
mate vegetation cover characteristics; and (3) evaluated the influence
of vegetation cover (aquatic vegetation, steppes, and forests) on the
DTM quality.

6.2 Materials and Methods

6.2.1 Study area

The present study was conducted on an area of 61 ha located in the
southern part of the Hornojiřetínská spoil heap in the Most basin
(northwest Bohemia, Czech Republic, 50°34´N, 13°34´E, Fig. 6.1). The
spoil heap’s elevation ranges from 220 m to 280 m above sea level. Due
to plans to mine the underlying coal seam in the future, this part of the
Hornojiřetínská spoil heap has never been technically reclaimed. The
terrain morphology has remained rugged as a result of heaping that
has formed a typical undulated terrain and consequently heterogeneous
vegetation (e.g. Doležalová et al., 2012; Frouz et al., 2018). The vegeta-
tion is in a late succession stage 35–50 years after heaping and consists
of aquatic vegetation in terrain depressions (e.g. Phragmites australis
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and Typha latifolia), steppes (low vegetation, especially Calamagrostis
epigejos and Arrhenatherum elatius with scattered shrubs and trees,
for example Sambucus, Rosa, Betula, Crataegus), and forests. Three
forest types are present in our study area; homogenous plantations of
even-aged growth of European ash (Fraxinus excelsior ; eastern part
of the study area), spontaneously grown forest dominated by Birch
(Betula pendula; central part of the study area), and mature forests of
Willow (Salix spp.) and Alder (Alnus spp.) (western part of the study
area; Tab. 6.1, Fig. 6.1).

6.2.2 ALS and UAV image data collection

Airborne LiDAR data was collected over the study area in May 2017 us-
ing a remote sensing platform FLIS (The Flying Laboratory of Imaging
Spectroscopy) (Hanuš et al., 2016). Although the system is equipped
with a Riegl LMS-Q780 full-waveform laser scanner, we used only dis-
crete return data. The scanner has a rotating polygon mirror and scans
in parallel lines. The scan field of view is 60° and the wavelength is
1064 nm. Flights for data collection were conducted at 1030 m above
ground with a velocity of 110 knots (ground speed) and with 55% flight
line side overlap, which provided the average density of 7.7 points per
square meter.

A home-assembled UAV consisting of an Easy Star II airframe by
Multiplex and 3DR Pixhawk autopilot equipped with a Nikon Coolpix A
camera (28 mm prime lens with f/2.8) was used for the series of flights
(in different phenological conditions) over the study area. Hereafter, we
refer to these three flights as Winter (11 March 2017 – leaf-off), Spring
(29 April 2016 – partly leaf-on), and Summer (1 July 2016 – leaf-on)
flights. Parallel flight lines were set to acquire an image overlap of 85%
and sidelap of 65%. Approximately 1000 images were taken during
each survey from an average flight altitude of 100 m above ground level,
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resulting in a 3 cm ground sampling distance. The camera settings
were manually set to ISO 400 and shutter speed priority 1/1250 s.

Table 6.1: General characteristics of the study area. Maximum, mean
and standard deviation of height are calculated from a LiDAR derived pit
free Canopy Height Model (LiDAR data were collected in May). Other
characteristics are calculated directly form LiDAR classified point cloud.
Canopy cover is calculated as the number of first returns above breast height
(1.37 m) divided by the number of all first returns. Density of ground, shrubs
and trees are number of returns in each height interval divided by total
number of returns.

Vegetation type Area Canopy Height [m]

[ha] cover [%] Max. Mean Std. dev.

Aquatic 3.4 4 16.5 0.5 94.4

Steppe 38.5 25 27.1 3.6 69.4

Forest 19.0 63 29.4 11.5 37.5

Vegetation type Density [%]

Ground and low vegetation Shrubs Low trees High trees

(< 0.3 m) (0.3–3 m) (3–15 m) (> 15 m)

Aquatic 94.4 2.5 3.0 0.0

Steppe 69.4 7.7 22.1 0.8

Forest 37.5 4.4 47.2 10.9

6.2.3 Ground control points
and verification data survey

Prior to UAV flights, 20 ground control points in the form of white
square fibreboard targets (40×40 cm) with black round centre (15 cm
in diameter) were distributed over the study area. The coordinates
of the ground control points were surveyed using a Trimble GeoXR
6000 handheld differential GPS with a pole-mounted Zephyr 2 external
antenna in the dual-frequency differential real-time kinematic (RTK)
mode. It was connected to the CZEPOS permanent GNSS network
and provided 2–4 cm horizontal and vertical relative accuracies.
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The RTK GNSS survey was conducted in the study area on 28 March
2017 (leaf-off period) to locate reference points for DTMs evaluation us-
ing a Leica GPS1200 system. In order to quantitatively assess the effect
of different vegetation canopies on DTMs’ accuracy, the information
about vegetation canopy (i.e., aquatic vegetation, steppes, and forest)
was recorded for each surveyed point. Because collection of GNSS data
under tall canopies was challenging even during the leaf-off period, a
conventional, total-station survey was used in forested areas. All refer-
ence points were transformed into the Datum of Uniform Trigonometric
Cadastral Network (S-JTSK; EPSG: 5514) and Baltic Vertical Datum -
After Adjustment (Bpv; EPSG: 5705) coordinate systems. In total, 796
reference points were collected for this study (55 in aquatic vegetation,
311 in steppes, and 430 points in forests).

6.2.4 Point clouds processing
and DTM generation

The LiDAR point cloud was processed using a proprietary software by
Global Change Research Institute CAS, referenced to the local Datum
of Uniform Trigonometric Cadastral Network and Baltic Vertical Datum
– After Adjustment. The LiDAR point cloud was further processed
using LAStools (lastools.org). LASnoise and LASground tools of the
LAStools software were used to determine ground points. We tested
several settings for LASground and visually assessed the resulting DTMs
using hill-shaded terrain and the success of ground points identification
in the most troublesome areas. Our final setting was as follows: step 4,
bulge 1, spike 2.3, offset 0.1, and stddev 10.

The UAV-acquired images, along with positional data measured by the
onboard GPS during the flight, were loaded into Agisoft Photoscan
Professional version 1.2.4 (agisoft.ru) and used to generate a 3D point
cloud. Agisoft Photoscan follows a common SfM–MVS workflow (Smith
et al., 2016). First, the alignment algorithm iteratively refined external

112

http://lastools.org
http://http:/www.agisoft.ru


and internal camera orientations and camera locations through a least
squares method and generated a sparse point cloud. The alignment
process was completed with the accuracy parameter set to ‘high’ and the
pair pre-selection parameter to ‘disabled’. The accuracy setting ensured
the use of the original image resolution while the ‘disabled’ setting of
the pair pre-selection ensured the best image matching. The limit was
set to 20,000 for key points (indicating the maximum number of points
sampled within each image) and to 5,000 for tie points (the number of
points used for image matching). Dense point clouds were built using a
dense multi-view 3D reconstruction algorithm with a high reconstruction
quality and mild depth filtering. Point clouds were georeferenced using
ground control points in the same horizontal and vertical datum as
LiDAR and exported into the LAS format (hereafter we refer to these
point clouds as SfM𝑆𝑃 𝑅𝐼𝑁𝐺, SfM𝑆𝑈𝑀𝑀𝐸𝑅, and SfM𝑊 𝐼𝑁𝑇 𝐸𝑅). Points
representing the ground surface were identified using LAS Ground tool
of the ArcGIS 10.4.1 software (ESRI, Redlands, CA, USA).

The identified ground points were used to create DTMs with a cell
size of 1 m (hereafter, we refer to these point clouds as DTM𝑆𝑃 𝑅𝐼𝑁𝐺,
DTM𝑆𝑈𝑀𝑀𝐸𝑅, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅, and DTM𝐿𝐼𝐷𝐴𝑅). We used a bin-average
method, which calculates the elevation for each cell by assigning the
average value of all points within that cell. Areas containing no ground
points (voids, see below) were triangulated and linearly interpolated to
determine their cell values. Water areas were manually vectorized over
a winter orthophoto and removed from the analysis.

6.2.5 Comparison of LiDAR and SfM point clouds

Both LiDAR and SfM point clouds were compared by quantifying the
overall point density, density of identified ground points, and percentage
of ground points in relation to all points. Subsequently, point clouds
were overlaid with a 1×1 m grid and the number of grid cells containing
no ground points was calculated (termed the “void fraction”). The void
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fraction represents areas that had to be interpolated in order to create
a DTM. We also visually compared the point clouds with orthophoto
maps for the three seasons (spring, summer, and winter) and through all
assessed types of canopy (i.e. aquatic vegetation, steppes, and forest).

Figure 6.2: Structure of four point clouds (winter, spring, summer, and
LiDAR) over three different environments (aquatic vegetation, forest, and
forest steppe). Comparison of LiDAR and summer point cloud (A) demon-
strates the known fact that dense vegetation prevents SfM ground detection.
However, spring (B) and especially winter (C) point clouds show a good
potential for detecting ground even under forest stands. The combination of
all three SfM point clouds (D) allows the identification of both ground and
vegetation canopy. The profile is 1 m wide.
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6.2.6 DTM accuracy assessment

We used six accuracy measures to assess the vertical accuracy of DTMs
generated from data collected using the SfM and LiDAR surveying
techniques (i.e. maximum, minimum, mean, skewness, RMSE, NMAD).
The GNSS survey, representing the most accurate data, was used as
the reference dataset (true elevation) to evaluate the DTMs. We first
calculated vertical differences among the 796 surveyed point elevations
and the corresponding DTM𝑆𝑃 𝑅𝐼𝑁𝐺, DTM𝑆𝑈𝑀𝑀𝐸𝑅, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅, and
DTM𝐿𝐼𝐷𝐴𝑅 grid cell elevations. Descriptive statistics (i.e. maximum,
minimum, and mean) were calculated for vertical differences. To eval-
uate the success of ground identification and vegetation removal, we
calculated the Bowley’s coefficient of skewness. We also used the dif-
ferences to calculate root mean square error (RMSE). We assessed the
deviation from the normal distribution using histograms and Q-Q-plots
(see Supplementary Materials Figs. S1–S4). As we detected a highly
non-normal distribution (fat-tailed), we also calculated normalized ab-
solute deviation (NMAD), a robust metric that is less sensitive to the
presence of outliers (see Höhle and Höhle, 2009).

6.2.7 Analysis of vegetation cover effect on DTM
accuracy

Inaccuracy in the generated DTMs results partially from an interpo-
lation of cells containing no ground points. Therefore, to compare
solely the accuracy of the two methods (and not of the interpolation
algorithm), we identified cells containing ground points from both SfM
and LiDAR surveys and performed a pairwise combination between
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and DTM𝐿𝐼𝐷𝐴𝑅 using cell-by-cell subtraction. Being the
best of all available SfM point clouds, only the winter point cloud was
used for this evaluation as a representative of SfM models (Tab. 6.2;
Fig. 6.2). Furthermore, we visually compared the results with respect
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to prevailing vegetation type (aquatic vegetation, forest steppe, and
forests) over the study area. To quantitatively evaluate the impact of
vegetation on DTM accuracy for each vegetation type, we calculated the
same descriptive statistics as mentioned above for individual vegetation
categories (which had been recorded for all reference points during the
field surveys).

Table 6.2: Summary of point cloud characteristics for the SfM and LiDAR
datasets. Point density is shown as Mean ± Standard deviation. Voids
fraction is the percentage of cells (1×1 m resolution) not containing any
ground point.

Dataset Total points Point density Ground points
(points/sq. m)

SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 196,103,451 333 ± 57 167,631,147
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 83,358,151 139 ± 74 31,383,865
SfM𝑆𝑈𝑀𝑀𝐸𝑅 78,098,227 135 ± 77 18,241,318
LiDAR 4,667,778 7.7 ± 3.3 2,696,995
Dataset Ground point Percent Void

density (points/sq. m) ground (%) fraction (%)
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 288 ± 83 85.5 0.6
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 61 ± 30 37.6 15.8
SfM𝑆𝑈𝑀𝑀𝐸𝑅 56 ± 27 23.4 45.1
LiDAR 5.3 ± 3.0 57.8 15.6

6.3 Results

6.3.1 Comparison of point clouds

Point cloud characteristics varied substantially for the acquired datasets
(Tab. 6.2; Fig. 6.2). Point densities acquired with SfM significantly
exceeded densities of the LiDAR point cloud. Of the 196,103,451
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 points (i.e., under optimal conditions for terrain measure-
ments), 85.5% were classified as ground points. In contrast, both
SfM𝑆𝑃 𝑅𝐼𝑁𝐺 and SfM𝑆𝑈𝑀𝑀𝐸𝑅 (i.e., suboptimal conditions) resulted in
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just 83,358,151 and 78,098,227 points, respectively, of which 37.6% and
23.4% were classified as ground points. Accordingly, when overlaid
with a 1×1 m resolution grid, the number of cells containing no ground
points was the highest for leaf-on conditions. For both total points
and ground points, the identified point densities for individual flights
differed significantly. The most evident difference was observed for the
forest environment, for which no ground points were identified through
the summer flight (Tab. 6.2; Fig. 6.3).

The density of photogrammetrically derived point clouds is much greater
than that of the LiDAR point clouds but that greater point density
does not necessarily indicate a greater accuracy. The reason is that
only LiDAR can penetrate through the gaps in vegetation canopies and
capture underlying canopy layers or ground elevation. It is evident that
with the point density used in our study, there are many gaps in LiDAR
ground coverage (Fig. 6.3G). By comparison, the density of ground
points in the SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 point cloud (Fig. 6.3E) is much higher. This
is quantitatively shown in the percentage of void cells (“void fraction”)
(Tab. 6.2). On the other hand, although the percentages of void cells
are similar for LiDAR and SfM𝑆𝑃 𝑅𝐼𝑁𝐺 point clouds, LiDAR ground
points are more evenly distributed. Furthermore, the point density of
SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 was considerably greater (333 points per square meter)
than those of SfM𝑆𝑃 𝑅𝐼𝑁𝐺 and SfM𝑆𝑈𝑀𝑀𝐸𝑅 (with fewer than 140 points
per square meter).

6.3.2 Combination of point clouds acquired
under leaf-on and leaf-off conditions

SfM𝑆𝑈𝑀𝑀𝐸𝑅 (leaf-on conditions) recorded elevation for the top surface,
which in this case means vegetation canopy (Fig. 6.2A). By compari-
son, SfM𝑆𝑃 𝑅𝐼𝑁𝐺 (partly leaf-off conditions) and SfM𝑊 𝐼𝑁𝑇 𝐸𝑅 (leaf-off
conditions) point clouds were able to capture ground elevation, albeit
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Figure 6.3: Visual comparison of ground point densities. All figures are from
the same location. (A) Spring SfM point cloud and (B) orthophoto; (C)
summer SfM point cloud and (D) orthophoto; (E) winter SfM point cloud and
(F) orthophoto; (G) LiDAR point cloud; (H) approximate distribution of the
three types of vegetation under study in the displayed area. No ground points
were identified in the summer (leaf-on period) under the forest vegetation
(C) while the ground is perfectly identified in the winter survey (E). Although
ground points are identified in aquatic vegetation and forest steppes in summer
(C), these may capture low vegetation (e.g. reed, grass) and do not accurately
represent bare ground. See also Fig. 6.2.

with varying degrees of success in various studied environments (i.e.
aquatic vegetation, forest steppe, and forest; Fig. 6.2B and C). Given
the differences in the point clouds acquired in the different phenological
phases, a combination of SfM𝑆𝑃 𝑅𝐼𝑁𝐺, SfM𝑆𝑈𝑀𝑀𝐸𝑅, and SfM𝑊 𝐼𝑁𝑇 𝐸𝑅

point clouds allowed us to record both vegetation canopy and ground
elevation and resembled the structure of the LiDAR point cloud (Fig.
6.2D).

6.3.3 Comparison of DTMs

With RMSE of 0.19 m and of 0.12 m, respectively, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and
DTM𝐿𝐼𝐷𝐴𝑅 achieved very similar results (Tab. 6.3). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 had
a higher maximum and minimum error than DTM𝐿𝐼𝐷𝐴𝑅 and exhibited
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a slight positive skew. This higher frequency of positive errors suggests
a persistent presence of above-ground features even in winter (see
vegetation category comparison). In contrast, DTM𝑆𝑃 𝑅𝐼𝑁𝐺 and in
particular DTM𝑆𝑈𝑀𝑀𝐸𝑅 achieved poorer results. DTM𝑆𝑈𝑀𝑀𝐸𝑅 had
the highest mean error of 0.83 m and RMSE of 1.71 m. DTM𝑆𝑃 𝑅𝐼𝑁𝐺

had a mean error of 0.07 m and RMSE of 0.46 m (see Tab. 6.3).

6.3.4 The effect of the vegetation
on DTMs accuracy

A high maximum positive error in DTM𝑆𝑈𝑀𝑀𝐸𝑅 indicates an exis-
tence of artefacts resulting from an unsuccessful filtering of the tree
foliage. These have been successfully avoided in DTM𝑆𝑃 𝑅𝐼𝑁𝐺 and
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 due to the smaller amount of tree foliage (or absent fo-
liage in case of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅) during data acquisition (Fig. 6.3B and
F). A low minimum negative error is however present in DTM𝑆𝑃 𝑅𝐼𝑁𝐺

and DTM𝑆𝑈𝑀𝑀𝐸𝑅 indicating that some areas are below the ground.
This is due to the inability to capture the undulated terrain over void
areas without ground points that had to be interpolated. In addition to
these void areas, low vegetation is often identified as terrain in summer
and the DTM𝑆𝑈𝑀𝑀𝐸𝑅 therefore showed a positive error skew. Both
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 and DTM𝐿𝐼𝐷𝐴𝑅 tend to overestimate the terrain elevation
in all vegetation categories (Tab. 6.4). While the quality of DTM𝐿𝐼𝐷𝐴𝑅

is relatively consistent across vegetation categories, DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 shows
variable accuracy. Both methods achieved the best accuracy in forests
(Fig. 6.4).

6.4 Discussion

The negative effect of the vegetation on DTM quality and overestima-
tion of bare earth due to the inconsistent ability of passive methods
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Table 6.3: Results of DTMs error analysis. Comparison of each DTM with
796 GNSS-gathered validation points. Bowley coefficient of skewness is used.
NMAD is a normalized absolute deviation – a robust metric less sensitive to
the presence of outliers than RMSE.

DTM Maximum (m) Minimum (m) Mean (m)
DTM𝑆𝑃 𝑅𝐼𝑁𝐺 1.43 −6.23 0.07
DTM𝑆𝑈𝑀𝑀𝐸𝑅 12.88 −4.26 0.83
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 1.39 −1.25 0.09
DTM𝐿𝑖𝐷𝐴𝑅 0.56 −0.48 0.05
DTM Skewness (m) RMSE (m) NMAD (m)
DTM𝑆𝑃 𝑅𝐼𝑁𝐺 −0.002 0.46 0.15
DTM𝑆𝑈𝑀𝑀𝐸𝑅 0.21 1.71 0.58
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.12 0.19 0.13
DTM𝐿𝑖𝐷𝐴𝑅 0.002 0.12 0.10

to penetrate vegetation canopies is a common observation (Dandois
and Ellis, 2013; Tonkin et al., 2014; Lovitt et al., 2017). Both meth-
ods achieved best accuracy in forests, which is not surprising if we
consider the vertical vegetation structure. The density of the most
problematic, i.e., shrub, vegetation in forests is low (Fig. 6.4H, Tab.
6.1) while it is considerably higher in forest steppes (Fig. 6.4E). Al-
though an effective use of UAVs in combination with photogrammetry
in ecosystems dominated by shrub vegetation has been demonstrated
by Cunliffe et al. (2016), the quality of acquired DTMs depends on
the character of the vegetation and terrain. In our study area, the
accuracy of DTMs in steppes was better for DTM𝐿𝐼𝐷𝐴𝑅 (with RMSE of
0.12 m) but DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 also achieved a very good result (with RMSE
of 0.21 m). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 error was skewed slightly positively. Positive
elevation errors can be attributed to the effect of short vegetation, which
is often misclassified as ground by the filtering algorithms due to the
small height difference between the vegetation and terrain (Meng et al.,
2010). Another reason for such errors may lie in the presence of very
dense shrubs that form an impenetrable flat area and resemble terrain
(e.g. Symphoricarpos albus). Besides, for photogrammetrically derived
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point clouds, we performed no manual processing of the data acquired
under leaf-off conditions while both datasets acquired under leaf-on
conditions required further manual processing as the tops of the dense
canopies had been identified as ground. Distinguishing ground points
from dense vegetation is particularly complicated for photogrammetric
point clouds due to the very high densities, but its influence is only
local and should be evident and easy to remove by manual evaluation.

LiDAR ground height estimation is particularly problematic for aquatic
vegetation due to the weak laser backscatter caused by water absorption.
As most LiDAR systems operate in the infrared region (like the one
adopted in this study), free water surfaces and saturated soils dampen
the returning signal (Hopkinson et al., 2005). As photogrammetry
methods are based on images from passive sensors, acquired point
clouds do not suffer from this issue and they may be better suited
for DTMs acquisition (Kalacska et al., 2017). Aquatic vegetation
stands however often persist during the winter, and our results show a
large difference of RMSE 0.36 m versus 0.14 m between DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

and DTM𝐿𝐼𝐷𝐴𝑅, respectively, for aquatic vegetation. DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

error shows a positive skew due to stands of dry aquatic vegetation
(e.g. Typha latifolia and Phragmites australis). These create dense
vegetation stands completely obscuring the bare earth and making its
detection impossible. On the other hand, the soil in the area of aquatic
vegetation is not constantly saturated (and was not at the time of LiDAR
acquisition) and LiDAR was therefore able to detect the bare earth.
This is also evident from the cell-by-cell comparison of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

and DTM𝐿𝐼𝐷𝐴𝑅 (Fig. 6.4). DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 overestimated the bare earth
in areas of aquatic vegetation compared to DTM𝐿𝐼𝐷𝐴𝑅. Recently, Lovitt
et al. (2017) compared the performance of photogrammetric and LiDAR
point clouds for characterizing terrain under peatland vegetation. In
contrast to our study, they found photogrammetric point clouds to
perform better than LiDAR point clouds in characterizing terrain under
peatland vegetation. This difference is likely caused by differences
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in the vegetation type within the study areas as the authors also
reported significant decline in accuracy for the most densely vegetated
areas (RMSE of 0.42 m, which is similar to our results). Luo et al.
(2015) reported RMSE of 0.15 m for a LiDAR-derived DTM under
short wetland vegetation, which is consistent with our result (RMSE of
0.14 m).

Table 6.4: Results of DTMs error analysis for SfM winter and LiDAR in
three environments. Comparison of each DTM with 796 GNSS gathered
validation points.

DTM Mean (m) Skewness (m) RMSE (m) NMAD (m)
Aquatic vegetation

DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.32 0.21 0.36 0.12
DTM𝐿𝑖𝐷𝐴𝑅 0.07 0.03 0.14 0.11

Steppes
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.08 0.25 0.21 0.12
DTM𝐿𝑖𝐷𝐴𝑅 0.07 −0.06 0.12 0.09

Forests
DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 0.06 −0.02 0.15 0.11
DTM𝐿𝑖𝐷𝐴𝑅 0.04 −0.003 0.12 0.11

Besides the evaluation of the digital terrain models, we also investigated
the possibility of replacing costly LiDAR data with a combination of SfM
data acquired from leaf-off and leaf-on imagery. Our results suggest that
at least for some applications (e.g. calculation of vegetation structure
characteristics often used to measure restoration success; Wortley et al.,
2013; Shackelford et al., 2018), such a substitution may be possible. This
is a significant improvement as studies usually relied on DTMs acquired
from external sources, such as ALS (Lisein et al., 2013; Hawryło et al.,
2017) or close-range terrestrial photogrammetry (Mikita et al., 2016).
However, it is important to note that photogrammetric point clouds are
inherently different from LiDAR point clouds, lacking detail in the lower
canopy. In addition, the point density can be affected, for example, by
flight parameters, camera settings, and environmental conditions such
as foliage movement in the wind (Jensen and Mathews, 2016; Moudrý
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et al., 2019). Consequently, the densities of point clouds combined from
different acquisition periods could be unpredictably biased and their
use likely limited to deriving simple variables (e.g. canopy height and
canopy cover). It is however fair to point out that many of the above
mentioned problems can also affect LiDAR data (e.g. Coops et al., 2007;
Roussel et al., 2017).

Our results have shown that DTMs derived from UAV-borne images
acquired during leaf-off period are comparable with a LiDAR-derived
point cloud in a forest and only slightly poorer in forest steppes and in
aquatic vegetation. This is consistent with recent findings by DeWitt
et al. (2017) that satellite images acquired under leaf-off conditions can
be used successfully to mitigate the effect of above-ground vegetation
and to acquire DTMs of similar accuracy to that of LiDAR-derived
DTMs. Similarly, Dandois and Ellis (2013) showed an improvement in
a DTM generated under leaf-off conditions of a temperate deciduous
forest; the benefit in their study was however not as significant as
our results (they reported RMSEs from 0.73 m to 2.72 m). This is
likely due to the differences in structure of the forests and thus of
acquired point clouds. The species composition on the three deciduous
forest plots (250×250 m) in their study was different (mainly American
beech Fagus grandifolia, oak Quercus spp., hickory Carya spp., and
tulip-poplar Liriodendron tulipifera) and the canopy was higher (mean
canopy height between 20 m and 37 m; maximum height up to 42 m). In
contrast with Dandois and Ellis(2013; see Figs. 2 and 7 in their paper)
high vegetation was only residually present in our point clouds (Fig.
6.2). Besides, they used a hexacopter and flew only 40 m above the
peak canopy height (our flying altitude was almost double that above
the canopy). Given the differences in accuracy between our results and
those acquired by Dandois and Ellis (2013), additional investigations
covering a range of various forest stands are needed to investigate
the accuracy, precision, and resolution of photogrammetrically derived
DTMs under deciduous forests. In addition, although our results
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indicate that natural conditions in winter appear promising, it must
be noted that the operation of UAVs is restricted to specific conditions
that must be met to acquire accurate terrain information. Meeting
such conditions in winter may be problematic because of snow, wind,
and relatively short duration of proper light conditions.

6.5 Conclusion

This work evaluated the quality of LiDAR and UAV-borne digital terrain
models of a spoil bank that could be possibly used for various safety,
remediation or ecological research purposes. We generated DTMs from
images acquired under leaf-on and leaf-off conditions in three different
environments (aquatic vegetation, steppe, and forest). Bare ground
was identified using ground classification methods and then binned or
interpolated over void areas to create DTMs at 1 m resolution. The
point cloud derived from images acquired under leaf-off conditions was
of the highest density. Vegetation artefacts were more successfully
removed by the filtering procedure for leaf-off point clouds than for
leaf-on point clouds and the identified ground points covered almost
the entire study area. The accuracy of DTMs generated from leaf-off
point cloud differed among the three environments. Overall accuracy
was close to that of LiDAR-derived DTMs, with the best agreement
in forests and the worst in the environment with aquatic vegetation.
We suggest that accuracy of both methods is sufficient to monitor
spoil banks terrain and provide information complementary to that
acquired by more traditional methods. However, careful consideration
must be given to site conditions at the time of image acquisition
because the accuracy of methods is highly dependent on the vertical
vegetation structure. While airborne LiDAR is suitable for monitoring
ground instability problems and mitigation measures for all seasons and
vegetation structures, UAV imagebased photogrammetry can be used
successfully in steppes and deciduous forest stands only under leaf-off
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conditions. The greatest advantage of the methodology described in this
paper is that leaf-off images allow accurate detection of ground surface
and, therefore, DTMs that can easily be compared to any subsequent
DTMs derived from photos taken at a later date; such a comparison
could detect any potential terrain changes. In addition, the combination
of UAV imagery from leaf-off and leaf-on periods can be potentially
used to calculate vegetation structure characteristics for studying a
susceptibility of slope failure or restoration success assessment. Further
research should quantitatively assess the sensitivity of images acquired
under leaf-off conditions to the various structures seen in deciduous
forest stands.

Appendix A. Supplementary data

Supplementary data to this article can be found online
at https://doi.org/10.1016/j.apgeog.2019.02.002.
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Figure 6.4: Orthophoto images of 1 ha plots inside study area at three different
environments. (A) aquatic vegetation; (D) forest steppe; (G) forest. The
above-ground height distribution of LiDAR returns (B, E, H), and a raster
surface of vertical difference (DTM𝑊 𝐼𝑁𝑇 𝐸𝑅−DTM𝐿𝐼𝐷𝐴𝑅) at 1 m resolution
(C, F, I). The colour scale indicates the differences between DTM𝑊 𝐼𝑁𝑇 𝐸𝑅

and DTM𝐿𝐼𝐷𝐴𝑅, see legend. Red colour shows areas of overestimation
and green colour areas of underestimation of DTM𝑊 𝐼𝑁𝑇 𝐸𝑅 compared to
DTM𝐿𝐼𝐷𝐴𝑅. Note that overestimation occurs mainly in areas of aquatic
vegetation around water areas. Density is calculated as number of returns in
each bin (here 2 m) divided by the total number of returns. See Fig. 6.1 for
location of the plots.
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Abstract

Solar energy is clearly a promising option among the many available
sources of renewable energy, and its market has seen outstanding growth.
Careful evaluation to determine suitable locations for photovoltaic
installations is needed, however, as their efficiency is highly dependent
on exposure to sun. Especially in urban environments, quantifying
the shadows cast by other buildings and vegetation canopies may be
essential. In the present study, we used light detection and ranging
(LiDAR) data and geographic information systems (GIS) to assess the
influence of shading vegetation on solar irradiation estimates in five
European towns. The fraction of annual solar irradiation lost to shading
by existing vegetation ranged between 3% and 11%. The fraction lost
was higher in winter and lower in summer. Due to greater incoming
solar radiation in summer, however, more than 50% of annual loss was
accounted for in summer. We suggest that at the broad scale of whole
cities the influence of vegetation on rooftop solar potential estimates
is negligible (especially in densely populated areas). Analyses which
do not consider vegetation because of data availability nevertheless
provide valuable insight into localities’ solar potential.
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7.1 Introduction

Use of energy from renewable sources is an important objective of the
European Union’s energy policy (see Calvert et al., 2013 for review of
progress in renewable energy mapping). According to EU Directive
2009/28/EC, the adoption of which established a common framework
for production and promotion of energy from renewable sources, the
EU should achieve a 20% share from renewable energy sources in total
electricity consumption by 2020. Among many available sources of
renewable energy, solar energy is clearly a promising option and its
market has seen outstanding growth in recent years (Devabhaktuni
et al., 2013). In some countries, however, incentives for employing
photovoltaic (PV) installations has led to a situation wherein they
consist predominantly of large ground-mounted facilities located on
agricultural land, also referred to as solar farms (Gallay et al., 2015).
Solar farms are often a preferred solution among investors due to
their high economic returns, but their negative impacts are typically
not considered. Solar farms jeopardize wide agricultural terrains and
compete for limited land with other renewable energy sources, such as
bioenergy feedstock systems (Calvert and Mabee, 2015). An adequate
alternative to solar farms may be PV installations on rooftops in urban
environments (e.g. Santos et al., 2014), and these, too, have been
promoted by recent changes in support schemes for PV installations
in some countries (Hofierka et al., 2014). Moreover, solar potential
has been proposed as important design parameter in urban planning
(e.g. Kanters and Horvat, 2012).

The estimation of rooftop solar potential in urban environments has
been of considerable interest in recent years. At a very broad scale,
the solar potential of building-integrated photovoltaics in EU member
states is estimated to be more than 22% of expected European 2030
annual electricity demand (Defaix et al., 2012). Urban environments
present challenges, however, due to the complex urban morphology. As
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more homeowners and businesses investigate the feasibility of rooftop
PV installations, there is growing demand for data and tools enabling
more accurate prediction of incident solar radiation.

Such tools have long been implemented in the most frequently used
GIS software: r.sun (Hofierka and Šúri, 2002) in GRASS and Solar
Analyst(Fu and Rich, 1999) in ArcGIS. However, only with increasing
availability of spatial data of adequate quality and extent, such as
light detection and ranging (LiDAR) data, have these tools inevitably
become common in the successful development of photovoltaic systems
in urban environments. For example, solar potential has been estimated
for the city of Bardejov in Slovakia (Hofierka and Kaňuk, 2009), a small
parish in the city of Lisbon (Santos et al., 2014), and downtown San
Francisco (Li et al., 2015). Moreover, many cities across the world have
developed their own solar maps to support the decision-making process
and identify locations suitable for PV installations. These typically
consist of a user-friendly web-based interface that visually provides
information about solar irradiation and instructs users about the costs
and benefits of PV installations. To examine a list of existing solar
maps, see Kanters et al. (2014) and Freitas et al. (2015). Given the
complexity of factors influencing incident solar radiation, the most
important factor in urban environments relates to shadowing effects.
For example, Sarralde et al. (2015) have explored the relationship
between urban morphology and the potential to harvest solar energy
and found as much as a 9% increase in rooftop solar potential when
the urban form is optimized.

In seeking suitable locations for photovoltaic installations, it is essential
to quantify the shadows cast by other buildings and vegetation canopies.
Vegetation is an important component of the urban environment, and
it has a multiplicity of functions: reducing air and noise pollution,
mitigating the urban heat island effect, and beautifying the urban
environment (Smardon, 1988). However, it is also a source of shadow
which may limit incident solar radiation. Moreover, it is often considered
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only simplistically or even excluded from solar radiation modelling
(Freitas et al., 2015). That is due mainly to a lack of appropriate
data in developing countries (e.g. Araya-Muñoz et al., 2014). Only
two studies to date have directly addressed the influence of vegetation
shading on rooftop solar potential.

It is difficult to draw conclusions from these studies, because their results
differ significantly. Levinson et al. (2009) found annual solar irradiation
loss due to vegetation of as much as 8%, and Tooke et al. (2011) reported
even 38%. Moreover, Tooke et al. (2011) limited their study to typical
days (solstices and equinoxes) for reasons of computational efficiency
and Levinson et al. (2009) derived shapes of tree canopies manually
from orthophotos, which is a laborious and time-consuming process for
larger areas. In the present study, we assess the importance of including
vegetation data into models and evaluate its impact on monthly rooftop
solar irradiation estimates while utilizing all the advantages of LiDAR
data. Whereas previous studies have concentrated their efforts on parts
of larger cities, mostly because of data availability, we rather selected
four small European towns to encompass different urban morphologies.

7.2 Methodology

7.2.1 Study area

The study encompassed five small European towns (Fig. 7.1) located in
the Czech Republic (Pec pod Sněžkou), Denmark (Kalvehave), Finland
(Pellesmäki), Slovenia (Lukavci), and the Netherlands (Macharen). The
locations differ in latitude, topography, and morphology. Those in
the Czech Republic, Finland are representative of cities with sparse
buildings, whereas those in the Netherlands, Denmark and Slovenia are
representative of more developed cities with dense housing (Tab. 7.1).
All study areas were cropped to be within a rectangle of 1 km2, which
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represents majority of towns’ built-up areas and only distant buildings
were removed from the analyses. Appendix A in the Supplementary
Material shows maps of the study areas (Fig. A.1 – A.5). The workflow
depicted in Fig. 7.2 was used to evaluate rooftop solar potential and
estimate the influence upon it of shadowing vegetation.

Figure 7.1: Locations of study areas within Europe.

7.2.2 LiDAR data

LiDAR is an active remote sensing device that consists of three com-
ponents: a laser scanner, which emits and receives laser pulses; an
inertial measurement unit (IMU), which detects changes in pitch, roll,
and yaw; and the Global Positioning System (GPS). By recording
the exact location of the sensor and the time it takes for each laser
pulse to return, a detailed three-dimensional dataset stored as a point
cloud is produced over a given area (Wehr and Lohr, 1999). LiDAR
provides a highly accurate, fast, and easy way to collect data, and many
state governments have collected high-resolution aerial LiDAR data for
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various purposes. Some of them have made this data freely available so
that everyone can benefit from their advantages. In this study, we used
airborne LiDAR datasets which are freely available (Tab. 7.2).

7.2.3 LiDAR-derived footprint and DSM

A building’s footprint and digital surface model (DSM) are required for
modelling rooftop solar irradiation. While many previous studies have
had to compile heterogeneous sources of spatial data, which may have
led to serious drawbacks with respect to data accuracy (Agugiaro et al.,
2012), we grasped the comprehensiveness of LiDAR and used it as a
single reliable source. See study by Martín et al. (2015) for a reviewof
existing studies that applied LiDAR data to assess solar potential in
urban environments.

Figure 7.2: Workflow to calculate rooftop solar potential and estimate the
influence of shading vegetation.

We used LAStools to detect buildings and vegetation from LiDAR data
(LAStools, 2014). First, point clouds were classified into ground and
non-ground returns (lasground) and the height of each return above
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the groundwas computed (lasheight). Second, discrimination was made
between returns representing buildings versus vegetation (lasclassify).
It is still challenging to accurately separate buildings from vegetation,
however, and particularly when branches of trees are close to buildings’
roofs. Thus, all point clouds were manually post-processed (edited)
and errors corrected.

To model potential solar irradiation, building footprints should represent
most accurately the outlines of the building roofs. There exist several
approaches for acquiring building footprints. These can be acquired
from cadastre data (Esclapés et al., 2014), manually digitized from high
resolution orthophotos (Hofierka and Kaňuk, 2009), or derived directly
from LiDAR (Tooke et al., 2011). Manual digitization is a laborious
process and cadastre data often suffer from inaccuracies (Agugiaro et al.,
2012). Direct generation of building footprints from classified LiDAR
data, as done in this study, is a straightforward method. Boundary
polygons that enclose all points representing a particular roof were
created using LAStools (lasboundary) and then simplified by ‘Simplify
Polygon’ and then ‘Simplify Building’ tool in ArcGIS 10.2 (ESRI, 2014).

DSMs are 2.5D representations of the Earth’s surface including all
objects on the ground (e.g. buildings, vegetation). The term 2.5D
refers to a model that is embedded in three dimensions (3D), but is
not able to represent all 3D shapes, such as caves and overhangs. This
is a major drawback when calculating incident solar radiation. In
order to determine the effect of vegetation canopies on the amount
of incident radiation, we created two DSMs: (1) vegetation included,
and (2) vegetation excluded. Both DSMs were derived from LiDAR
at a spatial resolution of 0.5 m. The first raster, which represents the
actual situation with vegetation, was created using the complete LiDAR
point cloud. The second represents a hypothetical situation without
the vegetation, and for its creation points classified as vegetation were
excluded. We used simple conversion whereby the maximum elevation
value of points found within a cell is assigned to the cell.
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Table 7.1: Summary of study areas and their morphological characteristics.

General characteristics

Country CR NL FI DK SLO

Location Pec Macharen Pellesmäki Kalvehave Lukavci

pod Sněžkou

Latitude 50.70 51.80 62.76 55.00 46.54

Longitude 15.73 5.54 27.56 12.16 16.15

Population 630 615 516 617 662

Vertical & horizontal distribution of buildings

Max. building height [m] 53.0 45.8 9.7 43.8 16.4

Avg. distance between

buildings (nearest neighbour

from centroid) [m] 37.7 16.4 31.6 15.7 24.2

Avg. building height [m] 7.5 ± 4.8 4.9 ± 2.1 4.3 ± 1.3 3.9 ± 1.6 4.9 ± 2.1

Building geometry

Avg. building volume [m3] 3097 1222 900 711 2987

Avg. building perimeter [m] 71.8 52.4 49.6 46.7 79.5

Building density

Number of buildings 136 355 142 625 169

Plot ratio (total roof area

divided by total area

of neighbourhood) 0.039 0.056 0.022 0.074 0.053

Site coverage (share

of total roof area) [%] 3.93 5.58 2.20 7.40 5.30

Total roof area [m2] 39,260 55,758 21,656 74,229 52,635

Total area of location [km2] 1.00 1.00 1.00 1.00 1.00

Vertical & horizontal distribution of vegetation

Total vegetation area [m2] 60,293 38,847 43,970 72,828 40,911

Max. vegetation height [m] 37.5 27.5 28.4 41.8 31.0

Avg. vegetation height [m] 12.0 ± 7.1 6.8 ± 3.7 9.6 ± 6.1 6.3 ± 3.8 7.6 ± 6.2

Maximum and average vegetation heights are calculated within a 30 m buffer distance
to buildings.

7.2.4 Estimating the incident solar irradiation

According to Izquierdo et al. (2008), solar potential may be charac-
terized in three hierarchical classes: (i) physical potential is the total
amount of energy received from the Sun, (ii) geographical potential is
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restricted to those locations where this energy can be captured, and
(iii) technical potential takes into account the technical characteristics
of the equipment used to transform the resource into electrical energy.
Since our goal is to assess the influence of vegetation on incoming solar
radiation, we focused, similarly as in previous studies (Levinson et al.,
2009; Tooke et al., 2011), on the physical solar potential of the rooftops.
For methods of assessing technical solar potential, see, for example,
Santos et al. (2014).

To estimate monthly incident solar radiation, we used the upward-
looking hemispherical viewshed algorithm developed by Fu and Rich
(1999), which forms the backbone of the ArcGIS Area Solar Radiation
tool (ESRI, 2014) and was more recently described briefly by Kodysh
et al. (2013). We ran the model separately for each month and for
both DSMs (with and without vegetation canopies). Monthly values
of incident solar radiation were clipped to the building footprints and
losses due to vegetation canopies were calculated by subtracting the
corresponding DSMs from one another. To calculate the study ar-
eas’ annual solar potential, 12 raster layers representing rooftop solar
potential were summed and summarized over all roofs.

Table 7.2: LiDAR data characteristics.

Country (Year) LiDAR dataset – available Resolution

[points·m2]

CR (2012)
Provided by Krkonoše Mountains

5
National Park Administration

NL (2011) AHN2 (www.ahn.nl) 9

FI (2010)
MML Laserkeilaukset

0.5
(tiedostopalvelu.maanmittauslaitos.fi/tp/kartta?)

DK (2014)
Danmarks Højdemodel

4.5
(download.kortforsyningen.dk)

SLO (2014) evode.arso.gov.si/indexd022.html?q=node/12 5.0

Viewsheds (angular distribution of sky obstruction) were calculated
by searching in specified directions around each cell. In accordance
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with our goal to estimate the shadowing effect caused by obstructing
trees, we set a relatively high value of 104 calculation directions. Other
topographical parameters, such as slope, aspect, latitude, and longitude,
were automatically extracted from the DSM. For the estimation of
incoming diffuse solar radiation (skymap), we assumed uniform sky
when radiation was the same from all sky directions. Monthly values
for transmissivity were obtained from the Langley Research Center
Atmospheric Science Data Center (eosweb.larc.nasa.gov/sse) and diffuse
proportion was taken from PVGIS (re.jrc.ec.europa.eu/pvgis) (see tables
B.1 and B.2 in the Supplementary Material, Appendix B). The sky
size for the viewshed, skymap, and sunmap grids was set to 350×350.
These grids are upward-looking, hemispherical raster representations
of the sky. The sunmap specifies apparent position of the sun as it
varies through time (day and season). The day and hour interval for
estimating the sunmap (amount of direct solar radiation) were left
default 14 and 0.5, respectively (see Kodysh et al., 2013 for further
details).

The analyses were executed on a personal workstation with CPU Intel
Core i5-4670 3.8 GHz, RAM 16 GB 1600 MHz, and GPU GeForce
GTX 660 2 GB and resulted in 384 raster layers. The time required
for estimating annual solar irradiation was approximately 34 h for each
location.

7.3 Results

7.3.1 Annual solar potential and losses due
to vegetation

Annual solar irradiation estimates differed between the two scenarios
(i.e., DSMs derived with and without vegetation). As expected, the
results show that average direct and diffuse solar irradiation modelled for
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building rooftops are substantially reduced when vegetation is included
in the input DSM. The results differed among study areas, however.
The reduction in mean annual sum of global (direct and diffuse) solar
irradiation was slightly greater for the sparsely populated cities of Pec
pod Sněžkou and Pellesmäki and lower for Macharen, Kalvehave and
Lukavci with dense housing. The estimated mean yearly sums of direct
and diffuse solar irradiation for the building rooftops in the study areas
are shown in Tab. 7.3.

7.3.2 Monthly changes in solar potential lost

Monthly solar irradiation estimates show an obvious annual cycle for
all study areas, with lowest values occurring in December and then
gradual increase to a peak in June. While the lost diffuse solar ir-
radiation remained constant throughout the year, the loss in direct
solar irradiation changed significantly – with higher values occurring
in summer jointly with increasing solar irradiation. Incoming solar
radiation lost due to vegetation was negligible in winter (up to 1 kWh
m−2 month−1) and higher in summer (up to 16 kWh m−2 month−1).
More than 50% of annual energy loss was accounted for in the summer
months in Lukavci, and this was seen to increase with latitude to as
much as 69% for Pellesmäki (see Fig. 7.3).

The fraction of solar radiation lost exhibits the opposite course during
the year, however. Inasmuch as direct radiation decreases and shadow
length increases with lower solar altitude, the reduction was greatest
for winter months, when the sun has a low altitude and shadows are
longest (Fig. 7.3). The fraction of monthly global solar irradiation lost
to shading by existing vegetationwas in the range of 5–11% for Pec pod
Sněžkou (CZ), 3–7% for Macharen (NL), 9–20% for Pellesmäki (FIN),
5–9% for Kalvehave (DK), and 3–6% for Lukavci (SLO).
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Table 7.3: Annual solar irradiation on rooftops (physical potential) in study
areas and lost due to vegetation canopies.

Location Global irradiation Direct irradiation Diffuse irradiation
[kWh/m2] [kWh/m2] [kWh/m2]

Pec pod
Sněžkou 1043 469 575
Macharen 887 414 473
Pellesmäki 791 384 407
Kalvehave 879 445 434
Lukavci 2131 1110 1021
Location Global irradiation Direct irradiation Diffuse irradiation

lost [%] lost [%] lost [%]
Pec pod
Sněžkou 5.83 3.84 7.45
Macharen 4.12 3.06 5.06
Pellesmäki 10.9 9.36 12.35
Kalvehave 5.58 4.15 7.05
Lukavci 3.45 2.31 4.69

Incoming solar irradiation values are maximum possible values without existing
vegetation. Percent represent decrease caused by existing vegetation.

7.3.3 Comparison of estimated solar irradiation
rasters

The differences in solar irradiance estimates for particular cells ranged
approximately between 0 and 1500 kWh m−2 year−1. For most of the
cells, however, differences were relatively low (less than 50 kWh m−2

year−1), especially, for densely build-up towns (Tab. 7.4). Erroneous
values lower than zero usually appeared at roof edges or elements such
as chimneys or dormers.

7.4 Discussion

Many cities across the world encourage the use of solar energy tech-
nologies in urban environments by providing web-based solar maps
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(Kanters et al., 2014). However, successful deployment of photovoltaic
installations in urban environments requires accurate data representing
terrain, vegetation, and building structures in order to estimate the spa-
tial distribution of photovoltaic potential in sufficient detail (Redweik
et al., 2013; Santos et al., 2014).

Our results corroborate previous studies and confirm that shadows
from vegetation may play an important role in determining the solar
irradiation received by the roofs of buildings in urban areas. The average
reduction in global solar irradiation was nevertheless surprisingly lower
than we had expected in light of the results of another study at similar
latitudes. Tooke et al. (2011) had estimated that trees on average reduce
incoming solar irradiation by 38% for the district of North Vancouver
(49°15´N). They had calculated solar irradiation only for single days
represented by the summer solstice, winter solstice, and equinox. Given
the seasonal variance in incoming solar radiation at higher latitudes, this
may possibly have caused significant overestimation. Results similar to
those of our study were obtained by Levinson et al. (2009), who found
annual insolation losses of up to 8% caused by vegetation shading and
predicted losses of as much as 14% after 30 years of vegetation growth
in four California cities (32°N–39°N).

7.4.1 Temporal changes in shadowing effects

Our results have shown obvious seasonal changes in solar energy loss
due to vegetation. It is important to note that the fraction of solar
irradiation intercepted by vegetation is actually higher during winter
months due to low solar altitude and thus long shadows cast by trees.
From an annual perspective, the major energy losses (more than 50%)
were determined in summer, due to the higher incoming solar radia-
tion in that season (Fig. 7.3). Unfortunately, there is greater energy
consumption in winter due to low temperatures and thus increased
demand for heating. At lower latitudes, however, the highest energy
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consumption is in summer due to demand for cooling (Levinson et al.,
2009). In such areas, the shadowing effect of vegetation is also consid-
ered in reducing energy demand in buildings (Balogun et al., 2014). We
suggest that the two effects should be considered equally when planting
trees. Traditionally, photovoltaics have been installed with a view to
maximum yearly energy production. According to Sánchez and Izard
(2015), however, solar panels could alternatively be mounted in non-
optimal orientations with potential benefit. These areas would produce
lower amounts of energy, but their hourly production profiles could be
shifted away from noon, thus enabling them to better match demand.
This possibility may enable the proper balance in placing solar panels
and trees to optimize buildings’ energy consumption and production
(Tooke et al., 2011; Kodysh et al., 2013). Moreover, consideration for
the temporal mismatch in peak solar energy availability and electricity
demand has recently become of considerable interest (e.g. Mavroma-
tidis et al., 2015; Ramirez Camargo et al., 2015). Nevertheless, the
negative effect of shadowing vegetation has yet to be studied jointly
with electricity demand during the day. Given the usual peak electricity
demand in early evenings, it is possible that when the temporal aspect
is taken into account the negative influence of shadowing vegetation
would increase.

7.4.2 Solar radiation models based on 2.5D

In the study by Tooke et al. (2011), vegetation overhanging roofs was
most often classified as trees rather than buildings and available roof
area was thus underestimated. Compared to their study, we slightly
improved the methodology. Our method does not suffer from this
bias, because, unlike Tooke et al. (2011), we classified buildings and
vegetation in a three-dimensional LiDAR point cloud. We estimated
solar radiation in 2.5D, however, and thus considered rooftops under
overhanging parts of trees as completely shadowed. Aggregation of a
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three-dimensional point cloud into a 2.5D raster inevitably results in a
loss of information.

Furthermore, the simplistic modelling approach used in our study rep-
resents vegetation as a solid shadow-caster and neglects light passing
through the canopies. In particular, seasonal loss of foliage from decid-
uous trees in winter may significantly decrease the amount of radiation
intercepted by vegetation (Levinson et al., 2009; Tooke et al., 2011).
Even though more appropriate algorithms exist that consider light
passing through canopies (Tooke et al., 2012) or an environment’s 3D
character (Jochem et al., 2009), tools based on 2.5D raster data are still
preferred due to their easy availability and less time-consuming and
more user-friendly nature. See, for example, study by Boz et al. (2015)
for a new method for locating suitable areas for PV systems. More-
over, most novel algorithms are currently inaccessible or not readily
usable for those without specialized software or knowledge. It will take
time for this to change, and for the time being 2.5D numerical radia-
tion algorithms coupled with GIS will still be valuable tools enabling
researchers to take into consideration most of the important factors
influencing incoming solar radiation. Of course, not only algorithms
(Zhang et al., 2015) but also input data influence the quality of esti-
mated solar irradiation. Meanwhile, modelling uncertainties such as
resolution (Ruiz-Arias et al., 2009; Zink et al., 2015), different input
data (Agugiaro et al., 2012) and influence of positional error (Biljecki
et al., 2015) have received very little attention in the existing literature.
Potential source of error, in our study, is DSM quality, its resolution and
edge effects that can lead to inaccurate slopes and aspects. Although
we used highly accurate LiDAR data, small objects such as dormers
and chimneys are difficult to identify and higher resolution DSMs are
required (Zink et al., 2015).
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7.5 Conclusion

In their comprehensive review, Freitas et al. (2015) recently noted that
effort is needed to develop appropriate algorithms that enable modelling
light passing through vegetation canopies. Although we agree with their
suggestion, our study has shown that, at least on the broad scale of
whole cities, the influence of vegetation on rooftop solar potential is not
so influential as previously suggested (Tooke et al., 2011). We suggest
that for decisions that need to know power potential over large areas
(e.g. for planning purposes) vegetation canopies can be excluded from
models. This is encouraging in view of the growing number of studies
from the developing world where solar energy can solve electricity
shortage problems (e.g. Gautam et al., 2015) and where studies often
lack appropriate data to include vegetation canopies into their models
(e.g. Araya-Muñoz et al., 2014). In our opinion, such data do provide
valuable insight into a location’s solar potential, but this is most likely
very location-dependent and researchers should proceed with caution
inasmuch as including such data leads to an unknown overestimate of
solar potential. Finally, at a local scale, when an individual building’s
roof and areas of that roof suitable for PV installation come into
consideration (e.g., web-based solar maps), then vegetation should
always be included into any analysis.

Appendix A. Supplementary data

Supplementary data related to this article can be found
at http://dx.doi.org/10.1016/j.apgeog.2015.11.011.
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Figure 7.3: Estimates of monthly solar irradiation on rooftops and lost due to
vegetation canopies. Rows represent different cities (from top to bottom: Pec
pod Sněžkou, Macharen, Pellesmäki, Kalvehave, Lukavci). The left column
shows solar irradiance lost due to vegetation in absolute values [kWh m−2

month−1]. The middle column shows estimates of monthly solar irradiance
where the solid line represents the situation without vegetation and the dashed
line that with existing vegetation. The right column shows the fraction of
solar irradiance [%] lost due to vegetation canopies from monthly irradiance
estimates. Note that the fraction lost is highest in winter months (right
column), when the actual energy loss is relatively low (left column).
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Table 7.4: Comparison of estimated solar irradiation rasters. Difference in
global annual solar irradiation estimates based on models with and without
vegetation.

Interval Czech Republic Denmark Finland

[kWh m−2 year−1] (Pec pod Snezkou) (Kalvehave) (Pellesmäki)

Num. of Relative Num. of Relative Num. of Relative

cells freq. [%] cells freq. [%] cells freq. [%]

< 0 596 0.38 3356 1.13 522 0.60

0–50 97824 62.31 226093 76.11 41781 48.21

50–100 28787 18.34 30688 10.33 19554 22.56

100-150 13492 8.59 12454 4.19 9688 11.18

150–200 7799 4.97 6885 2.32 5610 6.47

200–250 3680 2.34 4290 1.44 3424 3.95

250–300 1930 1.23 2843 0.96 2080 2.40

300–350 1037 0.66 2152 0.72 1196 1.38

350-400 774 0.49 1642 0.55 946 1.09

400-450 454 0.29 1239 0.42 698 0.81

450–500 231 0.15 1092 0.37 389 0.45

> 500 382 0.24 4327 1.46 776 0.90

Interval Netherland Slovenia

[kWh m−2 year−1] (Macharen) (Lukavci)

< 0 3629 1.63 1975 0.94

0–50 181535 81.39 174596 82.92

50–100 17152 7.69 17409 8.27

100-150 7419 3.33 6203 2.95

150–200 4067 1.82 3074 1.56

200–250 2262 1.01 1823 0.87

250–300 1526 0.68 1269 0.60

300–350 1096 0.49 870 0.41

350-400 837 0.38 570 0.27

400-450 633 0.28 477 0.23

450–500 559 0.25 371 0.18

> 500 2332 1.05 1929 0.92

Interval values represent increase in annual solar irradiation for particular cells
when existing vegetation is excluded. Note that the cell resolution is 0.5 m.
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Chapter 8

Discussion and Summary

The presented dissertation thesis consists of one submitted and three
published research studies focused on the topic of the use of laser
scanning data in the field of environmental research, especially where
vertical vegetation structure is concerned. The studies presented in the
previous chapters deal with topics related to the entire scope of airborne
laser scanning, from the data acquisition through the fundamental data
processing, up to the applications. Namely, the titles of the studies
are as follows: Study I: Suitability, characteristics, and comparison
of an airship UAV with LiDAR for middle size area mapping; Study
II: Assessment of LiDAR ground filtering algorithms for determining
ground surface of non-natural terrain overgrown with forest and steppe
vegetation; Study III: Comparison of leaf-off and leaf-on combined
UAV imagery and airborne LiDAR for assessment of a post-mining site
terrain and vegetation structure: Prospects for monitoring hazards and
restoration success and Study IV: Influence of vegetation canopies
on solar potential in urban environments. The following part of the
dissertation thesis includes comments on the individual research topics,
conclusions and summary of the thesis as well as suggestions for the
future research in this field. As the full discussion and conclusions form
a part of the published papers detailed in Chapters 4-7, the following
chapter will only summarize the findings and provide author’s comments
on the individual research topic and the discussion on how the aims of
dissertation were met.
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8.1 Conventional Platforms versus UAVs
for LiDAR Data Collection

“How to acquire LiDAR data?”

The use of UAVs as carriers for airborne laser scanning instead of con-
ventional aircraft is a current research topic, which can be demonstrated
by the high number of published scientific studies (e.g. Nagai et al.,
2009; Lin et al., 2011; Wallace et al., 2012; Tulldahl and Larsson, 2014;
Wallace et al., 2014; Khan et al., 2017; Guo et al., 2017; Liu et al., 2018).
From the economic point of view, it is a landscape mapping method
with a great potential for many fields of application. Conventional ALS
scanning is still unavailable for many applications due to its high costs
and researchers thus often have to rely on existing LiDAR datasets
that are often not entirely suitable for the particular purpose from the
perspective of point density, mapping accuracy or other characteristics
even where such data are available. At many locations, however, no
LiDAR data are available or are outdated and do not correspond with
the current reality anymore. Besides being cost-effective for many appli-
cations, another advantage of UAVs is the creation of very high-density
point clouds.

In Study I, the use of a very unorthodox UAV was examined, namely
an autonomous airship (AMA) instead of the more commonly used
multicopter. It is however not the first autonomous airship use in the
field of laser scanning, see Pan et al. (2015). The LiDAR system for
use on an airship was originally developed at the Czech University
of Technology primarily for laser scanning in the field of geodesy for
civil engineering; Study I was its first application in the field of
environmental research. An industrial laser scanning unit was used
instead of a commercial LiDAR system customized for UAV. At present,
some specialized types of lightweight LiDAR systems (e.g. RIEGL, 2019;
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Velodyne, 2019) have come to the market; it might be therefore expected
that such systems will become increasingly available in the coming years.

Study I is also the only one utilizing AMA UAV as a carrier of a home-
assembled LiDAR system. This obviously comes with certain risks,
especially when comparing an experimental or home-assembled mapping
carrier with a well-established commercial UAV, especially from the
perspective of the possibility of any failure during data collection or
with optimization and calibration of the entire system. Unfortunately,
both these risks manifested themselves during the data collection. The
maximum accuracy of the UAV AMA system was thus characterized
by the vertical height standard deviation of approx. 10-16 cm and the
maximum point cloud density of 15 points/m2, although the preliminary
mapping tests indicated a better accuracy (Koska et al., 2014). This
was most likely caused by the unfortunate fact that calibration of the
LiDAR system could not have been properly completed due to changes
in UAV legislation because the UAV flights over inhabited areas (which
included the test site) were banned. In all, three mapping flights were
performed, however the data were successfully acquired during the last
one only. Moreover, during the last mapping the airship engine failed
and as a result, the airship went out of control and crashed. This
incident resulted in irreparability of the system and, in effect, prevented
the use of the AMA UAV for mapping of the full area. We therefore
had to acquire ALS data with conventional aircraft in the end for use
in Studies II and III.

Conventional ALS is a widely used technique and point clouds derived
in this way form a basis for most existing studies. ALS data collection
is typically not performed by researchers themselves but the data is
either purchased from general purpose scanning or, if need be, ALS is
custom ordered from the providers of this service. Especially where
larger areas are concerned, this represents basically the only viable
option, although such custom ALS is very costly. In Studies II and III,
ALS data acquisition was ordered and performed using a commercially
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available LiDAR system, namely Riegl LMS-Q780. This LiDAR system
provides full waveform data, however we only used discrete return
measurements for Studies II and III. This therefore offers further
research opportunities. The average of the resulting point cloud was
8 points/m2.

Purchase of existing ALS data is obviously a less costly option than
that of custom ALS data acquisition. There are even freely available
datasets that are often provided by national authorities. It is however
necessary to point out that such datasets are not always suitable for
the purposes of the research; they are usually not up to date and do
not come with the data density, detail level and accuracy needed for
some studies. In Study I, we used a national dataset of the Czech
Republic that can be purchased. In Study IV, we used several freely
available LiDAR datasets of various densities and accuracies.

8.2 Comparison of UAV Imagery and ALS
for Evaluation of DTM and Vegeta-
tion Structure

“Is LiDAR so good for 3D mapping?”

In the previous chapter, we discussed platforms for collection of LiDAR
data with emphasis on UAV platforms. UAVs are however nowadays
very popular for imagery acquisition by optical cameras. As mentioned
before, ALS is a very costly method of data collection and UAV LiDAR
systems are not widely used, in view of which the UAV imagery appears
to be a perfect alternative to ALS. ALS still retains one significant
advantage over methods extracting vertical information from optical
imagery – it can provide a relatively detailed structure of the terrain
(even under a canopy) and vegetation, which is difficult to acquire from
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optical imagery. It is however not always possible to acquire LiDAR
data and when this is true, photogrammetry/computer vision methods
in combination with UAV imagery come into play. SfM/MVS data
processing results in a data structure similar to that of LiDAR data, i.e.,
a point cloud. The greatest difference lies in the method of extraction
of the individual points – while it is a direct measurement of individual
points in LiDAR, the SfM/MVS point clouds are acquired indirectly
after a reconstruction of a 3D scenery from photos. Data processing
of both types of point clouds is however performed in a similar way.
The most common final products acquired from such point clouds then
include DSMs or, in case of LiDAR, also DTMs, information about
vegetation heights (canopy height model) or about vegetation structure.
To a limited degree and under the right circumstances (e.g. if imagery
is acquired in the leaf-off period in deciduous forests), even SfM/MVS
methods may yield usable DTM and CHM; in comparison to LiDAR,
however, the vertical structure of vegetation cannot be captured.

In Study I and Study III, we compared data from laser scanning
(ALS, AMA) with fixed wing UAV imagery. Imaging was performed
using a home assembled UAV equipped with a compact digital camera.
In all, three mapping flights have been performed (winter, spring,
summer). Results of the comparison confirmed that UAV imagery
yields the best results on a bare, vegetation-free terrain (Tonkin et al.,
2014; Lovitt et al., 2017). At sites with the vegetation occurrence,
an aforementioned problem with permeability of the vegetation arose.
However, it was still possible to capture terrain where the canopy was
not continuous. In addition, even where the vegetation was dense, it
was possible to capture terrain when using proper timing (see Tomaštík
et al., 2017). The best results of terrain capture were thus achieved
during the winter imaging (in the leaf-off period); this however also
led to a major failure in capturing the tree heights. This problem was
nevertheless resolved by combining the imagery from the leaf-on and
leaf-off period as the full vegetation canopy was completely captured
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during the leaf-on period. Such a combination of two image acquisitions
at different time points therefore provides a potential substitution for
ALS scanning. In Study III, we demonstrated that although the
highest vertical accuracy was achieved as expected by ALS, winter UAV
imagery achieved comparable accuracies, especially in the deciduous
forest stands. When comparing ALS and UAV suitability, it is however
obvious that to be able to replace ALS with SfM imagery, at least two
flight missions must be performed to capture the vegetation structure.
In winter, there is also a risk of snow cover confounding the results.

8.3 Filtering Algorithms for Processing
Laser Scanning Data

“What to do with the raw LiDAR data?”

LiDAR data, or rather point cloud processing in general, is an important
step in creating final products (DTM, DSM, CHM, . . . ). A fundamental
part of processing of the point clouds is the ground points filtering as a
way of determining ground points (and, hence, the terrain), laying out
a basis for further ALS data processing. The used algorithms depend
largely on the type of the mapped landscape as each type of surface has
its specifics. As the landscape is typically quite complex and consists of
mixed landscape types, it is not possible to use a universally applicable
method of ground points filtering yielding satisfactory results. There
is a multitude of filtering algorithms utilizing different approaches for
specific types of ground structures (Meng et al., 2009; Susaki, 2012;
Rashidi and Rastiveis, 2017). Most filtering algorithms have various
settings options. A common user however often has no way of finding
his/her way through the settings and to choose the perfect filtering
method and its optimal parameters. A typical example of a landscape
type where identification of ground points is very important are forests.
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As LiDAR data are frequently used for obtaining understory topography,
which is then in turn used for creating DTMs and, in effect, CHMs,
which are especially used in forestry, the choice of the filtering method
is crucial.

In Study II, LiDAR filtering algorithms implemented in various pro-
grams were compared. Emphasis was laid on open source solutions;
however, commercial “black box” algorithms were also included in the
study. It is usually quite difficult to understand the way the proprietary
“black box algorithms” operate as well as to categorize the filtering
methods as the software producers often offer no information about
the used algorithm (e.g. ArcGIS Classify LAS Ground tool by ESRI).
Many black box solutions offer no possibility of customizing predefined
settings, either. The accuracy of the ground filtering is then predomi-
nantly dependent on the character of the terrain and the vegetation,
which has been reported in several studies (see e.g. Korzeniowska et al.,
2014; Montealegre et al., 2015). The use of such algorithms is especially
problematic where low vegetation is present. At such sites, a confused
point structure including noise and returns from both the ground and
low vegetation with small vertical differences appears. Our results
indicated that the best filtering algorithm was the one implemented in
LiDAR processing software LAStools. This algorithm was subsequently
used for filtering in Study III and Study IV.

After choosing the optimum filtering parameters and acquisition of
a point cloud classified into ground and non-ground points, DTM
is typically the first created model. If we wanted to acquire more
information about the point cloud, an additional data processing step
would have to be performed, namely automatic classification, especially
if man-made structures are present in the area of interest. This is the
only way we can make sure that the man-made objects are not going
to be considered as vegetation and that we will be able to filter them
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out if need be. Such algorithm was utilized in Study IV where the
area of interest was urbanized.

A so far untested approach to ground filtering or classification is the
use of ensemble modelling, which uses several filtering algorithms and
then assigns weights to individual points depending on the number
of algorithms that have classified the point in the same way. Such a
method could be instrumental in automatic processing of point clouds
in problematic areas.

8.4 Application of Laser Scanning Data
in Urban Environments

“Why and how to use LiDAR data?”

ALS data are presently extensively used. The biggest advantage is
the high level of detail, be it in an environment completely without
buildings as in Studies I, II, III where spoil banks constituted the area
of interest, or be it urban environment as in Study IV. In the urban
environment, however, ground filtering only is not a sufficient processing
method and an overall data classification has to be performed. In the
Study IV, ALS data were used for rooftop solar potential estimates,
which is lately a widely used method utilized in particular for creating
so-called solar cadastres or solar maps.

From the perspective of LiDAR data processing, it is however necessary
to point out that in the urban environment, we usually encounter
a higher rate of unusual objects and features than when mapping
natural landscapes with vegetation, such as in Studies I, II, III. Urban
environment is usually very complex with a high degree of representation
of artificial structures including street or park vegetation, above-ground
phone or power lines, lampposts, large industrial objects, chimneys,
retaining walls, bridges and buildings with roofs of many shapes. The

154



correct classification or filtering in such an area is quite challenging. In
particular, the fundamental filtering, i.e., determining ground points, is
sometimes quite difficult.

To determine the solar potential, it was necessary to know the topog-
raphy of the roof. The current classification algorithms are at present
capable to detect without any major problems clusters of points forming
a planar surface, which is frequently used for roof detection. In partic-
ular, detection of roofs from LiDAR data is one of the most common
tasks in the urban environment (Tarsha-Kurdi et al., 2008; Jochem
et al., 2009; Tooke et al., 2011). Nevertheless, the assumption of the
flatness of the surface fails in case of specific and, in particular, historic
buildings (churches, castles, towers, etc.). It is true that for estimat-
ing solar potential, such buildings are mostly irrelevant as mounting
photovoltaic panels on such buildings is mostly out of question.

In Study IV, we found that the effect of vegetation on the solar
potential estimates is at the relatively large scale of cities negligible;
at the local level, however, shadows of surrounding vegetation could
represent problems. Nevertheless, even analyses disregarding vegetation
can in the urban environment provide a valuable solar estimate of a
site.

8.5 Conclusions

In the theoretical and methodical parts of the thesis, we described
various options of the use of LiDAR for studying the environment and
the methods of its application. This thesis includes research on data
processing, UAV experiments or LiDAR comparison with other methods
of RS. The principal pros and cons of individual investigated methods
can be found in the discussion and conclusions of each individual study
or in the summary chapter above. Still, here are some of the most
important points:
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• Mapping accuracy using AMA LiDAR UAV system was on the
inferior side of the expected accuracy, which was most likely
caused by insufficient calibration of the system. The use of LiDAR
UAV is obviously a promising method, a suitable carrier/platform
must be however used. The airship demonstrated its negative
properties such as inferior manoeuvrability and, unfortunately, a
high rate of failure of the used propulsion system, which in effect
prevented the measurement of the entire area of interest. Even
application of fixed wing UAV imagery showed that the selected
area of interest was too large for this platform and data had to
be acquired in several flight missions. From the perspective of
accuracy, data derived from UAV imagery show the accuracy
similar to those of LiDAR where the terrain is free of vegetation.
If using conventional ALS and individual mapping, the data
acquisition costs would be multiple times higher then the use of
tested technologies.

• All tested LiDAR ground filtering algorithms yielded relatively
good results, their performance was however to a great degree af-
fected by the terrain slope and presence of vegetation. Algorithms
worked better in areas with tall vegetation than in those with
dense vegetation. The overall best results were provided by the
PTIN algorithm implemented in LAStools; some other algorithms
however provided superior results in specific environments. For
example, SMRF algorithm demonstrated very good performance
in the forest environment. The list of algorithms used in the
study was of course not comprehensive and other, although at
present probably less well known, ground filtering algorithms
might be available. The study however very well demonstrates
the importance of being able to select a proper algorithm with
optimum settings for various landscape types, which should be ide-
ally part of documentation provided in manuals to the individual
algorithms.
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• As a part of the evaluation of accuracy of data derived from
ALS and UAV imagery, DTMs generated from point clouds of
both methods were compared. In case of UAV imagery, two
separate missions at different times (leaf-on and leaf-off period)
were performed to create the DTM in the area containing three
different environments (aquatic vegetation, steppe, and forest) to
evaluate the possibility of creating DTM from imagery taken at
different time points. The overall accuracy of UAV imagery was
similar to that of LiDAR-derived DTM, with the best agreement
in forest environment and the worst in the environment of aquatic
vegetation. The accuracy of both methods would however be
sufficient for numerous applications, including e.g. monitoring of
spoil banks terrain. The use of UAV imagery is however more
susceptible to adverse weather conditions, especially as it must be
in many cases (depending on the structure of vegetation) taken
in the leaf-off period when the weather conditions are often far
from perfect and, moreover, a problem with snow covering the
terrain can arise. Airborne LiDAR can on the other hand be used
for mapping during all seasons and regardless of the vegetation
structure while UAV imagery can be in steppes and deciduous
forests successfully used only under leaf-off conditions.

• Utilization of LiDAR data allowed us to perform vegetation filter-
ing and to create scenarios for the calculation of solar potential on
the rooftops. We demonstrated that at least in the large extent
of entire urban areas, the effect of vegetation on the rooftops
solar potential is not significant and if making evaluation of the
solar potential on a larger scale, vegetation can be fully excluded
from the equation. On a local scale, however, where individual
buildings, roofs and parts of the roofs suitable for placement of
the photovoltaic panels are being evaluated, the vegetation should
always be included into the analysis.
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8.6 Further Research

The development of LiDAR systems is still far from being complete and
new possibilities of recording, data collection or processing (especially
with respect to the use of dual or multispectral airborne LiDAR or
lightweight UAV LiDAR systems) keep arising. In the future, we can
also expect increasing availability of LiDAR data from various specific
environments, which will undoubtedly require development of new (or
improvement of the existing) approaches to collection, processing and
storage of point cloud data. This is especially true in the fields of
filtering and classification algorithms and feature extraction, as well as
standardization of the data collection and sharing for extensive areas
(such as Europe). Nevertheless, modern high resolution LiDAR data
covering extensive areas come with a phenomenon – spatial big data,
i.e. the fact that the data are just too bulky, which among other things
increases the demands for data processing (Sugumaran et al., 2012;
Singh et al., 2016). Where data processing is concerned, research in the
fields of automatic classification and detection of individual features
on the Earth surface (water bodies, vegetation or single trees, bridge
decks, etc.) using deep learning or machine learning methods is ongoing
(Guan et al., 2015; Hu and Yuan, 2016; Zhao et al., 2018; Kumar et al.,
2019; Verschoof-van and Lambers, 2019).

As this thesis dealt with the topic of laser scanning in environmental
science, I would like to focus my future research on the same area, in
particular on the point cloud filtering and classification algorithms as
well as on the use of LiDAR data originating besides manned aircraft
systems also from terrestrial, mobile and UAV platforms for mapping
(not only) in the field of environmental research.

At present, I participate in two research topics. The first project aiming
at the field of filtering algorithms, is titled “Contrasting performance
of six ground filtering algorithms with LiDAR and UAV based pho-
togrammetric point clouds in complex artificial terrain”. It focuses on
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comparison of LiDAR ground filtering algorithms for both airborne
LiDAR and UAV imagery point cloud. The other project focused more
on the ecological side, is titled “The influence of structure of growth on
the species diversity and distribution of birds in the Giant Mountains
national park” and deals with the use of ALS point clouds for modelling
species diversity and distribution of birds.

8.7 Afterword

The present development and trends in various areas of remote sensing
indicate that the availability of three-dimensional spatial data will keep
improving. In view of the possibilities represented by laser scanning
technologies, we can therefore over time assume that unique datasets will
be acquired, reflecting the complex condition of the landscape and will
be stored as a “digital imprint” for future generations. This principle
is even now being used in the fields of archaeology and architecture.
The landscape condition stored in this way can in the future represent
a valuable source of information for research purposes
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